The X-ray calibration facility for the characterization of Gas Pixel Detectors

M. Aglietta, R.Bonino, N.Cibrario, A.Frassa', A.Gorgi, L.Latronico, S. Maldera, M.Marengo, S.Tugliani

ICFDT7 - 7th International Conference on Frontier in Diagnostic Technologies

S. Maldera ICFDT7 22 October 2024

Gas Pixel Detector (GPD) for X-ray polarimetry

- Photoelectric effect dominant for soft X-rays (<10keV)
- · Photoelectric differential cross section

$$\frac{d\sigma_{ph}^K}{d\Omega} = r_0^2 \alpha^4 Z^5 \left(\frac{m_e c^2}{E}\right)^{\frac{7}{2}} \frac{4\sqrt{2} \sin^2 \theta \cos^2 \phi}{(1+\beta \cos \theta)^4}$$

- K-shell photo-electrons 100% modulated for linearly polarized radiation
- We want to measure the emission direction of the photo-electron

Modulation factor:

reconstructed polarization fraction for a 100% polarized beam

$$\mu = \frac{N_{max} - N_{min}}{N_{max} + N_{min}}$$

GPD overview

- X-ray absorption in gas
- Signal amplification via GEM (Gas Electron Multiplier)
- Finely pixelized ASIC for readout

ICFDT7

3

22 October 2024

Study of the linear polarization of astrophysical X-ray sources in the 2-8 keV energy range

- Launch: 9 December 2021.
- Orbit: 600 km, equatorial (inclination 0°).
- Detector: 3 Detector Units (DU), each of them equipped with a Gas Pixel Detector

POLARIZATION: information about the geometry of the emitting matter and of magnetic and gravitational fields

~130 sources observed, ~half of them with measurable x-ray polarization

Check-out a brief history of the field at Weisskopf, Galaxies 2018, 6, 33

XCF: X-ray Calibration Facility

Irradiation setup in Torino aimed to:

- Monitor the long term performances of GPDs
- Test and characterize detectors:
 - > new generations of GPDs
 - Position- energy- and polarization-sensitive X-ray detectors.

Main characteristics:

- Two output beams, one polarized by Bragg diffraction at 45°
- Set of 6 polarizing crystals
- Three different x-rays sources
- Positioning stages for detector under test
- Crystal positioning:

height

 θ, ϕ axes

• Two ancillary detectors (sdd, cmos camera)

XCF: X-ray Calibration Facility

Irradiation setup in Torino aimed to:

- Monitor the long term performances of GPDs
- Test and characterize detectors:
 - > new generations of GPDs
 - Position- energy- and polarization-sensitive X-ray detectors.

Main characteristics:

- Two output beams, one polarized by Bragg diffraction at 45°
- Set of 6 polarizing crystals
- Three different x-rays sources
- Positioning stages for detector under test
- Crystal positioning: height

 θ, ϕ axes

• Two ancillary detectors (sdd, cmos camera)

XCF: X-ray sources

McPherson mod 462

6 interchangeable solid anodes, dual beam output

Power: 30W, 10 kV max, 3mA

Anode	Мо	Rh	Pd	Ti	Fe	Ni
Line	Lα	Lα	Lα	Κα	Κα	Κα
E [KeV]	2.293	2.697	2.839	4.511	6.404	7.478

(currently showing some stability problems...)

MXR selead tube:

Mo anode (L α = 2.294 keV)

• ⁵⁵Fe source

1mCu

 $K\alpha = 5.9 \text{keV}, K\beta = 6.5 \text{keV}$

Ancillary detectors

- Amptec fast SDD

25 mm ² active area	
--------------------------------	--

Resolution of 122 eV FWHM at 5.9 keV $\sim 2\%$

Count rates > 1,000,000 CPS

Windows: Be $12.5 \ \mu m$

- Modified* optical sensor (sony IMX294)

*glass cover removed

4144x2822 pixels (4.63 um) 14 bit ADC Energy resolution (FWHM) ~2.2% @6keV Efficiency ~10% @6keV w.r.t SDD

Polarized beam

Polarization by Bragg diffraction at 45°

8	Crystal	Energia [keV]	θ Bragg	P [%]
	InSb 111	2.28	46.6°	~99
	Ge 111	2.62	46.5 °	~99
	Si 111	2.82	44.4 °	~99
	Si 220	4.45	46.6 °	~98
	Si 400	6.32	46.3 °	~99
	Ge 422	7.43	46.2 °	~99

Polarized beam

Polarization by Bragg diffraction at 45°

Crystal	Energia [keV]	θ Bragg	P [%]
InSb 111	2.28	46.6 °	~99
Ge 111	2.62	46.5 °	~99
Si 111	2.82	44.4 °	~99
Si 220	4.45	46.6 °	~98
Si 400	6.32	46.3 °	~99
Ge 422	7.43	46.2 °	~99

GPD test and characterization @XCF

modulation factor (E)

Conclusions

- Gas Pixel Detectors opened a new "window" on the polarization of x-rays
 astrophysical sources
- The X-Ray calibration facility @ Torino is an x-rays irradiation setup in the energy range 2-8 keV.
 - Can provide polarized (almost monochromatic) and not polarized beams
 - Main goals:
 - study the long term evolution of IXPE GPDs
 - test and calibration of new GPD prototypes
 - test and characterize generic position- energy- and polarizationsensitive X-ray detectors.

The IXPE XPOL chip layout and single pixel FE chain

CMOS VLSI chip built with 180nm technology

- 16M+ transistors
- 105k hexagonal pixels (300x352)
- 15mm² 470 pixel/mm² density

Each pixel contains

- Hexagonal metal top layer
- Charge sensitive amplifier (~400mV/fC)
- Shaping circuit (~4usec)
- Low noise (<30e ENC)
- Multiplexer to external ADC (1V dynamic, ~30ke)

33

The IXPE GEM

Parameter	Value
Number of holes	112008 (359 × 312)
Horizontal pitch	43.30 μm
Vertical pitch	50.00 μm
Hole diameter	30 µm
Hole diameter dispersion	~ 1 μ m (typical)
Top-bottom alignment	$\sim 2 \mu m$ (typical)
Metal coating	Copper
Coating thickness	$5\mu\mathrm{m}$
Substrate	Liquid crystal polymer (LCP)
Substrate thickness	50 µm
Manufacturing process	Laser etching
Typical operating voltage	~ 470 V
Gain gain scaling	$\propto \exp(\sim 0.03 \text{ V})$
Working effective gain	~ 200

GPD performances

Parameter	Typical value
Effective noise	22.5 electrons ENC
Gain uniformity	~20%
Energy resolution	$\sim 17.5\%$ FWHM at 5.9 keV
Position resolution	<100 µm rms
Modulation factor	$\sim 28\% - 55\%$ @ 2.7–6.4 keV
Spurious modulation	< 0.5% at 5.9 keV
Trigger efficiency	$\sim 100\%$ down to 1 keV
Dead time per event	$\sim 1 \text{ ms}$ at 2.7 keV

Quantum efficiency

XCF: X-ray Calibration Facility

Rh-Ge111: energy-position

3.0

0.5

0.0

As expected different energies are diffracted at different angles

