Diagnostic Systems in the Muon g-2 Experiment at Fermilab

Matteo Sorbara on Behalf of the Muon g-2 Collaboration

University and INFN Roma "Tor Vergata"

International Conference on Frontier in Diagnostic Tecnologies Frascati, 21-23 October 2024

M. Sorbara

Muon g-2

Oiagnostic systems in the experiment

Spin Precession in a Magnetic Field

A particle's spin in a magnetic field experience a torque and a precession motion proportional to it's magnetic moment, defined as

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

The spin precession frequency is given by:

$$\omega_s = g \frac{e}{2m} B$$

- Dirac equation predicts naturally g = 2 for a spin $\frac{1}{2}$ elementary particle
- Define the anomaly as $a_{\mu} := \frac{g-2}{2}$
- Radiative corrections give a positive contribution. Schwinger: $a_{\mu} \sim \frac{\alpha}{2\pi} \approx 0.00116$ (at first order)

 $a_{\mu}=0+a_{\mu}^{QED}$

- Highest and most precise contribution to a_{μ}
- Computed perturbatively

$$a_{\mu}^{QED} = \sum_{n \ge 1} c^{(2n)} \left(\frac{\alpha}{\pi}\right)^n$$

- Contribution due to the Z, W, H exchange
- Computed at 2 loops level
- Well known and with small uncertainty

- Second dominant uncertainty source
- At low energies:
 - Data driven
 - Lattice QCD
- Perturbative QCD for c-quark loops

M. Sorbara

$$a_{\mu}=0+a_{\mu}^{QED}+a_{\mu}^{W}+a_{\mu}^{HLbL}+a_{\mu}^{HVP}$$
)

Dirac

Weak

Hadronic LbL

Hadronic Vacuum Polarization

- $a_{\mu}^{HVP,LO}=rac{1}{4\pi^3}\int_{m^2}^{\infty}ds\;K(s)\;\sigma_{e^+e^ightarrow had}^0$
- Lattice QCD calculation shows a discrepancy with the dispersive approach

M. Sorbara

Muon g-2

• Dispersive (data driven):

How to measure a_{μ}

The measurement is based on the anomalous spin precession frequency:

$$\vec{\omega}_{a} = \vec{\omega}_{spin} - \vec{\omega}_{cyclotron} = a_{\mu} \frac{eB}{mc}$$

• $a_{\mu} = 0$ spin and momentum precess at the same rate

How to measure a_{μ}

The measurement is based on the anomalous spin precession frequency:

$$\vec{\omega}_{a} = \vec{\omega}_{spin} - \vec{\omega}_{cyclotron} = a_{\mu} \frac{eB}{mc}$$

- $a_{\mu} = 0$ spin and momentum precess at the same rate
- $a_{\mu} > 0$ the spin has a precession motion around the momentum direction

 a_{μ} can be extracted from a polarized muon beam by measuring ω_a and **B**:

$$a_{\mu} = \frac{\omega_{a}}{B} \cdot \frac{mc}{e}$$

How to measure a_{μ} (for real)

$$a_{\mu} = \frac{\omega_{a}}{\tilde{\omega}_{p}'(T)} \underbrace{\frac{\mu_{p}'(T)}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}}_{\text{External}}$$

We extract the ratio:

Magnetic field is expressed in term of the shielded proton precession frequency (ω'_p) . External factors are known to very high precision (22 ppb uncertainty).

$$R'_{\mu} = \frac{\omega_{a}}{\tilde{\omega}'_{p}(T)} = \frac{f_{clock} \cdot \omega_{a}^{meas} \cdot \underbrace{(1 + C_{e} + C_{p} + C_{dd} + C_{ml} + C_{pa})}_{f_{calib} \cdot \langle \omega'_{p}(x, y, \phi) \cdot M(x, y, \phi) \rangle \cdot \underbrace{(1 + B_{k} + B_{q})}_{\text{Transient Fields}}$$

- ω_a^{meas} is the the measured precession frequency
- $\tilde{\omega}'_p(T)$ is the the magnetic field magnitude averaged around the ring
- $M(x, y, \phi)$ is the beam distribution along the ring

Muons production

- LINAC produces 400 MeV proton beam
- Protons accelerated to 8 GeV in Booster

M. Sorbara

Muon g-2

Muons production

- Rebunching in the Recycler Ring
- Proton bunches sent to the Target Station

M. Sorbara

Muon g-2

Muons production

- Protons are smashed on a Ni/Cr target to produce π^+
- $p, \ \mu^+, \ \pi^+$ are selected in momentum and sent into the delivery ring
- π^+ decay, p are separated, polarized muons are sent to the g-2 storage ring

Inflector

Quadrupoles

How to measure the spin precession frequency

The muon polarization is measured using the parity-violating decay

High momentum e^+ are emitted preferentially in the muon's spin direction

Count the number of high energy positrons in a given direction as a function of time to extract the precession frequency

Detect decay positrons

- 24 PbF2 calorimeters along the inner circumference (out of vacuum)
- Čerenkov light is read by large area SiPM
- Gain is monitored at a 10⁻⁴ level of stability by state of the art Laser Calibration System

The anomalous precession frequency

The time distribution of the high energy positrons shows the muons exponential decay modulated by the anomalous precession frequency. The distribution is fitted to extract ω_a :

$$N(t) = N_0 * e^{-rac{t}{ au_{\mu}}} \cdot [1 - A\cos(\omega_{a} \cdot t + arphi)] + C_{\mu}$$

Corrections to the equations include:

- Beam Dynamic terms to account for beam oscillations that distort the modulation signal
- Muon Losses that distort the exponential shape of the distribution

Weighted Magnetic Field

- A trolley is equipped to measure the magnetic field inside the storage region
- Dedicated runs every 2/3 days when beam is off
- A field map in the storage region is interpolated in time to get the field during data taking period (more later)
- The field map is averaged over the azimuth and weighted with the muons distribution

Results (Run 1)

At this point the muon anomaly can be computed:

$$a_{\mu} = rac{\omega_{a}}{\widetilde{\omega}_{p}'(T)} rac{\mu_{p}'(T)}{\mu_{e}} rac{m_{\mu}}{m_{e}} rac{g_{e}}{2}$$

First result published on April 2021:

- Based on 5% of the data collected
- Confirmed BNL experiment result (20 years before)
- Increased the discrepancy with the Theory Initiative White Paper to 4.2σ

M. Sorbara

Results (Run 2 and Run 3)

New result released on the 10th of August 2023

- Result paper: Phys.Rev.Lett. 131 (2023) 16, 161802; Analysis
 Details: Phys.Rev.D 110 (2024) 3, 032009
- In excellent agreement with both BNL and Run 1 result
- Reduced by a factor 2.2 statistical and systematic uncertainty

$$\begin{array}{ll} a^{Run2-3}_{\mu} &= 116\ 592\ 057(25)\times 10^{-11} & [0.21\ {\rm ppm}] \\ a^{Run1-2-3}_{\mu} &= 116\ 592\ 055(24)\times 10^{-11} & [0.20\ {\rm ppm}] \\ a^{ExpAvg}_{\mu} &= 116\ 592\ 059(22)\times 10^{-11} & [0.19\ {\rm ppm}] \end{array}$$

M. Sorbara

ICFDT7 - 22 October 2024 15 / 23

Beam injection monitors

- T0 detector
- Made of a slab of plastic scintillator read by two PMTs
- Positioned at the end of the beamline out of vacuum
- Provides the trigger at the beam injection
- The integral of the T0 counts also provide the number of injected muons

Muon g-2

Beam injection monitors

- Inflector Beam Monitoring Station (IBMS)
- Two detectors placed along the beamline
- Set of scintillating fibers in a grid pattern
- Provides the beam profile at the entrance of the storage ring before the inflector
- Used for beam monitoring and tuning

Beam Distribution

- Beam reconstruction is crucial for the analysis
- $\bullet\,$ Two tracker stations at 180° and 270° azimuth angle
- 8 modules with 32 straw tubes in stereo pattern (give x and y)
- Provides a non-destructive reconstruction of the beam position over time

M. Sorbara

Muon g-2

ICFDT7 - 22 October 2024 18 / 23

Beam Distribution

- Track is reconstructed by fitting the hit points on each straw
- The fitted track is extrapolated backwards to reconstruct the muon decay vertex point
- The track curvature provides a momentum measurement of the particle
- Using the particle momentum and the energy deposit in the calorimeter is possible to keep track of the muons not stored

Magnetic field

- Magnetic field monitoring is based on Nuclear Magnetic Resonance techniques
- Absolute field is measured from the precession frequency of the proton in the NMR probes
- 378 probes continuously measure the field around the vacuum chamber
- A trolley equipped with 17 probes is used to track the magnetic field in the muon storage region (edicated runs every 2/3 days)

Calorimeter Gain Corrections

- At beam injection a large flux of particles hit the calorimeters
- SiPMs gain drops due to the high number of hits
- $\mathcal{O}(10 \ \mu s)$ recovery time
- Laser system measures the calorimeter response as a function of time
- Positron energy is corrected:

$$E_{true} = E_{SiPM} \cdot \frac{1}{1 - \alpha e^{-t/\tau}}$$

M. Sorbara

Laser Calibration System

- The calibration system provides a laser pulse in each of the 1296 crystals to keep track of any gain variation
- The system has two monitors to keep the laser pulses stable at $\mathcal{O}(10^{-4})$ level

Conclusions

- High precision physics can be reached only with a precise knowledge of all the experiment subsystems
- Muon g-2 uses these diagnostic systems to track and reduce systematics associated with the instrumentation
- Reached the goal of 70 ppb of systematic uncertainties from the TDR
- Achieved precision of 0.19 ppm on the combined a_{μ} measurement
- Full statistics is under analysis to reach the goal of 0.14 ppm stated at the beginning of the experiment

Total Uncertainty:

$$\begin{array}{ll} \sigma^{\textit{Run1}} &= 434^{\textit{Stat}} + 157^{\textit{Syst}} ~\textit{ppb} \\ \sigma^{\textit{Run2-3}} &= 201^{\textit{Stat}} + 70^{\textit{Syst}} ~\textit{ppb} \end{array}$$

M. Sorbara

Muon g-2

Theory Comparison

• Fermilab result alone yelds to a $> 5\sigma$ discrepancy with the 2020 Theory Initiative calculation

BMW/DMZ24 Collaborations arXiv: 2407.10913

Theory Comparison

- Fermilab result alone yelds to a $> 5\sigma$ discrepancy with the 2020 Theory Initiative calculation
- HVP value from lattice calculations reduces the discrepancy with the experimental value

BMW/DMZ24 Collaborations arXiv: 2407.10913

Theory Comparison

- Fermilab result alone yelds to a $> 5\sigma$ discrepancy with the 2020 Theory Initiative calculation
- HVP value from lattice calculations reduces the discrepancy with the experimental value
- Recent results on $e^+e^- \rightarrow \pi^+\pi^-$ cross section from CMD-3 (below 1 GeV) further reduces the discrepancy
- Many efforts on the theory side to resolve theoretical ambiguities

BMW/DMZ24 Collaborations arXiv: 2407.10913

Hadronic Vacuum Polarization

Dispersion integral from the optical theorem:

$$a_{\mu}^{HVP,LO}=rac{lpha^2}{3\pi^2}\int_{m_{\pi}^2}^{+\infty}rac{K(s)}{s}R(s)ds$$

with

$$R(s) = \frac{\sigma^{0}(e^{+}e^{-} \rightarrow \text{hadrons})}{\sigma_{pt}(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$

	Value (10^{-11})	$\substack{ Uncertainty \\ (10^{-11}) }$
QED	116 584 718.931	0.104
Weak	153.6	1.0
HVP	6845	40
HLbL	92	18
Total	116 591 810	43
HVP _L	6989	55

$a_{\mu}^{HVP,LO}$ and running of lpha

Hadronic contribution to the running of the QED coupling constant at M_Z

$$\Delta \alpha_{had}(M_Z^2) = \frac{M_Z^2}{4\alpha \pi^2} \int_{m_\pi^2}^{\infty} \frac{ds}{M_Z^2 - s} \ \sigma^0(e^+e^- \to hadrons)$$

while

$$a_{\mu}^{HVP,LO}=rac{1}{4\pi^3}\int_{m_{\pi}^2}^{\infty}ds\; {\cal K}(s)\; \sigma^0(e^+e^- o hadrons)$$

Missing contributions in the hadronic cross section:

- $\sqrt{s}\gtrsim 1~{\rm GeV}$ excluded by constraints from the global EW fit at 95% C.L.
- $\sqrt{s} \lesssim 1~{\rm GeV}$ one order of magnitude larger than the experimental uncertainty
- A. Keshavarzi, W. J. Marciano, M. Passera, A. Sirlin Muon g-2 and $\Delta \alpha$ connection Phys. Rev. D 102, 033002 (2020)

M. Sorbara

Quis custodiet ipsos custodes?

After Run 1 many efforts were done to improve the uncertainties:

Statistics

- Factor 4.7 in the number of analyzed positrons (weighted, E > 1 GeV, t > 30 μs)
- Statistical uncertainty decreased from 434 ppb (Run 1) to 201 ppb (Run 2-3)

- Statistics
- Beam Storage Quadrupoles
 - Damaged resistors in Run 1 caused beam motion during the fill; re-designed for Run 2 to reduce beam motion
 - Reduced uncertainty on C_{pa} from 75 ppb to 13 ppb

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
 - Kickers strength improved to design value at the end of Run 3
 - Beam more centered, reduced oscillations

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
- Temperature stability
 - Thermal insulation added to the ring between Run 1 and Run 2 to improve thermal stability of the magnet
 - A/C hall cooling after Run 2 further improved the stability
 - Reduced magnetic field and SiPM gain variations due to temperature

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
- Temperature stability
- Field Transient Measurement
 - Quadrupoles transient field B_q measured all around the ring (only 2 locations in Run 1)
 - Improved Kicker transient field measurement with fiber magnetometer

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
- Temperature stability
- Field Transient Measurement
- Analysis Technique Improvements
 - New positron reconstruction algorithms
 - Improved Pile-Up subtraction technique

Including beam motion and relativistic effects the anomalous precession frequency becomes:

$$\vec{\omega}_{a} = -\frac{e}{mc} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \frac{\gamma}{\gamma + 1} \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right]$$

- The electric field term is due to the focussing electrostatic quadrupoles; for $\gamma = 29.3$ it becomes negligible;
- The magnetic field term is due to the beam vertical oscillation;
- Precisely measure ω_a and the *B*-field to measure a_{μ} .

Typical Beam Frequencies

$$n = -\frac{R_0}{vB_0}\frac{\partial E_y}{\partial y}$$

Name	Symbol	Expression	Frequency [MHz]
Cyclotron	f _c	$\frac{V}{2*\pi*R_0}$	6.71
Horizontal Betatron	f_X	$f_c\sqrt{1-n}$	6.33
Vertical Betatron	f_y	$f_c \sqrt{n}$	2.20
Coherent Betatron	f _{CBO}	$f_c - f_x$	0.37
Vertical Waist	f_{VW}	$f_c - 2f_y$	2.30
Anomalous Precession	f _a	$a_{\mu}eB/m$	0.2292

Detectors Resolutions

Calorimeter:

- Energy: $4.6\%/\sqrt{E}$
- Time: 20 ps on a single crystal
- Space: $\mathcal{O}(1 \text{ mm})$

Tracker:

- Space: 110 μm
- Time: 1 ns
- Efficiency: 99% (97% at the edge of the straw)