

Streak camera diagnostic for high-power laser-matter interactions

J. Filardi¹, D. Giulietti¹, M. Cipriani², M. Scisciò², F. Consoli²

¹University of Pisa, Physics Department ²ENEA, Fusion and Technologies for Nuclear Safety Department

Streak cameras

- Time-resolved information on plasma evolution
- Problem: converting streaked image into quantitative data
- Accurate emission modeling required
- Emission dependency on electron density, temperature and wavelength
- Further extracted information:
 - Ion sound speed
 - Plasma position

Bottom right: raw streak data from Ref.[1]

Sweep circul Streak Image to botton on phosphor screen Optical Intensity C Space celerating electrode Phosphor screen Incident lia (where electrons electrons \rightarrow light Photocathode are accelerated The intensity of the incident light light → electrons) MCP which multiplies

The operating principle of the streak camera

Plasma emission

• Free-free absorbtion coefficient

$$k_{ff}(\lambda) = 1.3674 * 10^{-27} \lambda^3 n_e T_e^{-1/2} \sum_z z^2 n_z G_Z(T_e, \lambda)$$

- Wavelength λ
- Electron number density n_e
- Ion number density (atomic number Z) n_z
- Electron temperature T_e
- Gaunt factor for Inverse Bremsstrahlung

$$G_Z(T_e, \lambda) = \frac{\sqrt{3}}{\pi} \left[log \left(2.1 * 10^8 \frac{\lambda T_e^{\frac{3}{2}}}{zc} \right) - \frac{5}{2} \gamma \right] \qquad \text{with } \gamma = 0.544$$

Plasma emission

• Free-bound absorbtion coefficient (per neutral atomic species)

$$k_{fb}(\lambda) = 8.6 * 10^{-19} \lambda^3 n_a n_e T_e^{\frac{3}{2}} \sigma_{ea}(T_e) \left(1 + \left(1 + \frac{hc}{\lambda k T_e} \right) \right)$$

- Neutral atom number density n_a
- Saha equation to calculate n_a
- Electron-neutral atom scattering cross-section $\sigma_{ea}(T_e)$
- Binary Encounter-Bethe model for $\sigma_{ea}(T_e)$
- Bound-bound absorbtion coefficient (for relevant bands centered on λ_0)

$$k_{bb}(\lambda) = n \sum_{\lambda_0} f_{\lambda_0} \sigma_{\lambda,\lambda_0}$$

- Oscillator number f_{λ_0}
- Band cross section $\sigma_{\lambda,\lambda_0}$
- Atom number density *n*

Plasma emission

• Detailed balancing in Local Thermal Equilibrium

$$\frac{\eta(\lambda)}{k_{tot}(\lambda)} = \frac{2KT_e}{\lambda^2}$$

with $\eta(\lambda)$ emissivity per unit wavelength

• Luminous intensity *I* variation per plasma unit length *dl*

 $\frac{dI_{\lambda}}{dl} = (\eta(\lambda) - k(\lambda)I_{\lambda})$

UNIVERSITÀ DI PISA

• Bound-bound cross section can be neglected for visible spectra

$$k_{tot}(\lambda) = \left(k_{ff}(\lambda) + k_{fb}(\lambda) + k_{bb}(\lambda)\right) \left(1 - \exp\left(-\frac{hc}{\lambda K T_e}\right)\right)$$
$$k_{ff}(\lambda) = 1.3674 * 10^{-27} \lambda^3 n_e T_e^{-1/2} \sum_z z^2 n_z G(T_e)$$
$$k_{fb}(\lambda) = 8.6 * 10^{-19} \lambda^3 n_a n_e T_e^{\frac{3}{2}} \sigma_{ea}(T_e) \left(1 + \left(1 + \frac{hc}{\lambda k T_e}\right)\right)$$

$$k_{bb}(\lambda) = n \sum_{k} f_{\lambda_0} \sigma_{\lambda,\lambda_0}$$

Developing a Synthetic

- Test on toy model (1D simple plasma expansion into vacuum at constant electron temperature) on visible range.
- Emulation of laser-generated plasma in front of an undercritical foam target
- Starting profile is gaussian (200 µm half-width, $10^{27} \frac{el}{m^3}$ density peak, 1.6 * $10^7 K$ electron temperature)

$$(dt + v\nabla)v = -\frac{ze}{m_i}\frac{d\Phi}{dx}, \quad n_e = n_{e0}\exp\left(\frac{e\Phi}{KT_e}\right)$$
$$(dt + v\nabla)n_z = -n_z\frac{dv}{dx}, \quad \epsilon_0\frac{d^2\Phi}{dx^2} = e(n_e - zn_z)$$

- 1D velocity v
- Electric field Φ
- Dielectric constant ϵ_0
- Solved numerically assuming self-similar motion

Developing a Synthetic

- Calculate absorbtion coefficients and emissivity from density and temperature profile
- Integrate over specral range sampled from streak camera datasheet (model C5680-N5716)

Conclusions

- Relative orders of magnitude in luminous intensity for different parameters are compatible with experimental data [1]
- Free-free and free-bound effects scale correctly for commonly used plasma chemical compositions (4-5 orders of magnitude for visible light)
- Dominant density and temperature scaling

How to proceed?

- Test x-ray emission for relevant atomic species and ions
- Test with simulation profiles and compare to experiments
- Account streak pixel overlap
- Direct integration in simulation code (FLASH code)

Thank you for your attention

References:

-[1] Cipriani, M., Gus'kov, S. Yu., De Angelis, R., Consoli, F., Rupasov, A. A., Andreoli, P., Cristofari, G., & Di Giorgio, G. (2018). Laser-driven hydrothermal wave speed in low-Z foam of overcritical density. In Physics of Plasmas (Vol. 25, Issue 9). AIP Publishing. https://doi.org/10.1063/1.5041511

-Hoffman, J., Moscicki, T., & Szymanski, Z. (2011). The effect of laser wavelength on heating of ablated carbon plume. In Applied Physics A (Vol. 104, Issue 3, pp. 815–819). Springer Science and Business Media LLC. https://doi.org/10.1007/s00339-011-6420-2

-J. Richter, in Plasma Diagnostics, ed. by A.A. Lochte-Holtgreven (North Holland, Amsterdam, 1968) -F. Cabannes, J.C. Chapelle, in Reactions Under Plasma Conditions, ed. by M. Venugopalan (Wiley, New York, 1971)

-Tanaka, H., Brunger, M. J., Campbell, L., Kato, H., Hoshino, M., & Rau, A. R. P. (2016). Scaled plane-wave Born cross sections for atoms and molecules. In Reviews of Modern Physics (Vol. 88, Issue 2). American Physical Society (APS). https://doi.org/10.1103/revmodphys.88.025004

-Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Zeldovich Ya.B., Rajzer Yu.P.)

