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» Context: laser-driven pulsed electromagnetic fields (EMPs) and their generation



EMPs: when do they occur?

> Transient electromagnetic pulses (EMPs) are regularly detected in laser—target interactions with laser pulses from the
femtosecond to the nanosecond range. They occur whenever a displacement of charges is induced.
* ICF experiments

» Laser-plasma acceleration
* Under-dense targets (e.g. foams)
+ Gas-jet targets

» Remarkable intensity (up to the MV/m order and beyond) and broad frequency range from MHz to THz.

» EMPs scale with laser energy and mostly with laser intensity
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EMP sources and generation mechanisms
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EMP sources and generation mechanisms
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EMP sources and generation mechanisms

intensity max temporal  max frequency
field source distribution decreasing from max fields  duration range
z Clectone : neutralization current  vertical monopolar target ~ r— with  Several 100s ns 10s GHz
- SEFIR e antenna a<2 MY m~!
target —7f*% surface-sheath horizontal dipolar  target ~ r2 MVm some ps 10s GHz to THz
: oscillations antenna
charged layersdueto  close to surfaces target and from MV m- some ns 10s GHz
J / photoionization exposed to exposed
v UV-X-y surfaces
wakefields of close to the charged particle ~MVm~  10sns 100s GHz
accelerated charges charged particle beams and
beams target X E
particles on surfaces dosetosurfaces,  exposedsurfaces ~ MVm™' 10s ns approximately X
even far from and target 10s MHz to GHz X PO AN
the target i ’
G
R
target
10 xR
X-rays % l E
b=} wakefields
:

y
F.Consoli et al., Phil. Trans. Royal Soc. A379, 20200022 (2021)
F. Consaoli et al., High Power Laser Science and Engineering 8, e22 (2020)



EMPs: hazardous or beneficial?

The EMP associated electric fields can reach the MV/m order.
« saturation/damaging of electronic equipment inside/outside the interaction chamber
* interference with experimental measurements

» background noise affecting signal transmission 0.6

ToF signal with high
05!t EMP pollution
» Mitigation techniques are a trending research topic

[on signal

0.37

0.2¢

Amplitude [a.u.]

017

2 L ! 1 1 1 1 1
0 -100 0 100 200 300 400 500
Time [ns]

M. Salvadori et al., JINST 15 C10002, 2020
L. Giuffrida et al., Phys. Rev. E 101, 013204 (2013)




EMPs: hazardous or beneficial?

Intense electromagnetic fields produced by laser-matter interaction can be used for as diagnostic instrument and can be
used for applications.

« provide a “signature” of the laser-matter interaction

* manipulation of accelerated charged particles

» medical, biological, astrophysical and material studies

«  Source of intense fields (tens of kA currents, hundreds of T magnetic field, several MV/m electric field)

» Techniques for accurately measuring, controlling and tuning EMPs are being investigated
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Research on EMPs: a growing

community

Most recent review about EMP research on HPLSE
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High Power Laser Science and Engineering, (2020), Vol. 8, €22, 59 pages. NCE AND ENGINEERI

doi:10.1017/hpl.2020.13
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https://www.laserlab-europe.eu/aisbl/expert-groups/laser-
generated-electromagnetic-pulses

Laserlab
Europe

Laser-generated electromagnetic pulses

The interaction of high-energy and high-power laser pulses with matter produces broadband particle and electromagnetic radiation. In
particular, a significant portion of the incoming laser energy is transformed to powerful transient electromagnetic pulses (EMPs) in a
bread range of radiofrequencies, microwaves and THz radiation. Such fields depend on |aser energy and intensity and can easily exceed
the MV/m magnitude - strong enough to represent a significant danger for any electronic device placed inside or outside the
experimental vacuum chamber. This has been observed werldwide in experiments with high power lasers

EMPs pose a very important limitation on the performance of high-power laser facilities for applications as diverse as inertial
confinement fusion and laser—plasma acceleration. More severe issues are expected for the upcoming PW-scale lasers. The increase of
the repetition rate needed to transition processes such as laser acceleration from scientific proof of principle to “real world" applications,
e.g. for hadron therapy, also creates the need for more reliable and efficient EMP protection and mitigation technigues.

Understanding the origin of EMP and the complex temporal and spatial distribution of these electromagnetic fields is of key importance
for the development of suitable EMP mitigation schemes for safe facility operation. This is constrained by the development of
quantitative EMP diagnostic methods and devices that are capable of operating in the harsh conditions of high-power laser experiments.

The members of the present expert group have strong commaon research interests and extensive expertise on the research activities of
laser-generated electromagnetic pulses in the whole RF-puw-THz band, including modeling, diagnostics, mitigation and applications. This
will be of direct applicability to all modern laser plasma facilities and importantly to future laser-plasma acceleration and inertial-
confinement-fusion plants, and potentially to next generation laser-driven hadron therapy systems. The expert group will promote and
focus the activities of each institution to define mutual collaborations and prepare joint experimental campaigns.


https://www.laserlab-europe.eu/aisbl/expert-groups/laser-generated-electromagnetic-pulses
https://www.laserlab-europe.eu/aisbl/expert-groups/laser-generated-electromagnetic-pulses
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» EMP probes: established and upcoming technology, challenges and techniques



EMP probes for field sensing

Conductive Probes
+ B-Dot, Moebious loops, for B fields

* D-Dot, antennas for E fields

+ Calibrated loops for neutralization current

» Robust, versatile and well-known behavior

> Information on EMPs is in terms of electrical current, in environments
heavily affected by ionizing radiation

» Sensitive to the time derivative of fields: low noise amplified in signal
riconstruction

» Problems of electromagnetic coupling to the conductors nearby
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EMP probes for field sensing
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EMP measurements: multiple sources of noise or

“artifact” signal
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EMP measurements: multiple sources of noise or

“artifact” signal
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EMP measurements: multiple sources of noise or

“artifact” signal
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» EMP measurements with conductive and novel dielectric probes
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EMP probes: D-dot

Differential conductive probe, retrieving the D-field derivative.
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EMP measurement with D-dot: assessment of

signal-to-noise ratio
Vulcan Petawatt laser
600J,1 ps

Distance probe-TCC : 190 cm

201 #17 — Free probe ~40 V ampl.
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EMP measurement with D-dot;: assessment of

sighal-to-noise ratio

The noise level along the connection link can be estimated by
i) wrapping the probe with conductive foil

» SNR =3

201 #17 — Free probe ~40 V ampl.
#18 — Al wrapped probe ~13 V ampl.

10
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EMP measurement with D-dot;: assessment of

sighal-to-noise ratio

The noise level along the connection link can be estimated by
i) wrapping the probe with conductive foil
i) disconnect the probe from the scope

» SNR =3
» SNR = 40
201 #17 — Free probe ~40 V ampl. |

#18 — Al wrapped probe ~13 V ampl.
#21 — Disconnected probe ~1 V ampl.

10

ddot signal [V]
o

—20 1

0 50 100 150 200 250 300 350

t[ns]
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EMP measurement with D-dot;: assessment of

sighal-to-noise ratio

The noise level along the connection link can be estimated by EMP signals well repeatable for similar interaction
i) wrapping the probe with conductive foil parameters: turning the probe by 180° Leads to a signal
ii) disconnect the probe from the scope inversion if no significant noise is added to the signal.
» SNR =3 100 Shot #12
> SNR =~ 40 7 Ejaser = 80.4
. s > Best focus
20 #17 — Free probe ~40 V ampl. 3 2%
#18 — Al wrapped probe ~13 V ampl. 7 00
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EMP measurements with D-dot

PALS laser

E=600J
350 ps

Probe —TCC:
~40 cm
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EMP measurements with D-dot
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F. Consaoli et al., Sci. Rep 9, 8551 (2019)
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EMP measurements with D-dot

PALS laser

E=600J
350 ps

Probe —TCC:
~40 cm

'[ electrons
X
target
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F. Consaoli et al., Sci. Rep 9, 8551 (2019)
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EMP probes: electro-optical probe

The probe is based on the Linear Electro-Optical (Pockels) effect, provided by an isotropic crystal. The crystal changes its refractive
index according to the present E-field intensity. Polarization state modulation (PSM): the polarization of a Circularly polarized laser
probe beam will be modified by birefringence induced on the isotropic crystal.

fibers | : v |
# Lens + /4 plate _

; ass | / Enclosure .t i
PM optical Glass sleeve Bragg mirror

optical -
electrical I

~3cm
E@) [V/m] = AF [m™] - xgo(®)[V] =t][ ] =
~5mm

The optical signal is converted to a fully analogue voltage (no sampling). Sub-ns
temporal resolution, mm-scale spatial resolution, measurement voxel < mm3.

» Important to assess noise level: typically, low SNR due to low sensitivity
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EMP EO measurement
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EMP EO measurement

Faraday box
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EMP EO meausrement

100

Shot #9 o
EIaser =685J §' 0
- Slow transient
—100 5 0 100 200 300 400 500 Component iS ﬁltered'
100
Shot #10 - 1
Ejaser = 318J 2 ° E@®) [V/m] = AF [m™"] - xgo (D) [V]
-0 Antenna calibration
- yields electric field
w00 0 ° 100 200 0 00 i values in the multiple
75| - tens of kV/m range.
Shot #17 = B
Ejaser =966 J, ‘:; °l

60 um defocusing I

—-504

-751

~100" 750 0 100 200 300 400 500
t [ns]



EO probe vs. D-dot comparison
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Conclusions

+ Laser-matter interaction of high energy and intensity produce remarkable transient electromagnetic pulses, up to the MV/m order.
* Recognized major source of emission in the MHz-GHz domain is the neutralization current flowing through the target holder.
» Other sources of EMP are identified, but further characterization is needed.

* A large number of promising applications can be enabled by a full comprehension of the physics of EMP generation, of the
mechanisms of their operation, and by a suitable characterization of EMP fields.

* Primary requirement is the development and optimization of effective EMP detection methodologies, still an open issue in many
conditions.

* Novel electro-optical-based measurement techniques represent the state of the art for novel EMP diagnostics. However, they still
require in-detail studies and improvement for an effective use as an alternative to conductive probes.
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Thank you for your attention.

Massimiliano Sciscio

massimiliano.sciscio@enea.it
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This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom
Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the
European Union nor the European Commission can be held responsible for them. The involved teams have operated within the
framework of the Enabling Research Project: ENR-IFE.01.CEA “Advancing shock ignition for direct-drive inertial fusion”.
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