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 Motivation:

Neutrons emitted from a deuterium/tritium fusion plasma are the main signature of the nuclear fusion

process and some important plasma parameters. Different measurement methods can be used:

• Time resolved neutron yield monitor

• Activation system

• Neutron profile camera

• Neutron spectrometer
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• Time resolved neutron yield monitor

• Activation system

• Neutron profile camera
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 Function of High-Resolution Neutron Spectrometer (HRNS) for the ITER tokamak:

• Primary: Prediction of fuel ion ratio nT/nD with uncertainty of less than 20% for a measurement 

time window of 100 ms

• Supplementary: fuel ion temperature measurement with uncertainty less than 10% for a 

measurement time window of 100 ms
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To fulfill the requirement on nT/nD for a fusion power range of 0.5 to

500 MW, four different neutron spectrometers are proposed. The set of

neutron spectrometers suggested for the HRNS system are as follows:
• Thin Proton Recoil (TPR)

• Neutron Diamond Detectors

• Back-scattering Time-of-Flight (bToF)

• Forward Time-of-Flight (fToF)

High-Resolution Neutron Spectrometer (HRNS) at ITER
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• TPR spectrometer of ITER equipped with annular
silicon (Si) detectors.

• Polyethylene (PE) foils used as neutron-proton
convertor.

• Three PE-Si detection systems placed along the LOS,
under vacuum.

[M. Scholz et al. (2019) Nucl. Fusion 59 065001]
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• TPR spectrometer of ITER equipped with annular
silicon (Si) detectors.

• Polyethylene (PE) foils used as neutron-proton
convertor.

• Three PE-Si detection systems placed along the LOS,
under vacuum.

Recoil protons are directed toward the Si detector behind
the PE foil, where it generates a signal (pulse height)
proportional to its energy.

𝐸𝑛 =
𝐸𝑝

cos2 𝜃

[M. Scholz et al. (2019) Nucl. Fusion 59 065001]
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Thin-foil Proton Recoil (TPR) Gas Electron Multiplier (GEM)

+

Basic idea of compact NS-GEM detector: estimate energies of protons from TPR by measuring their specific energy
losses dE/dx and record proton tracks in the GEM active volume, to then reconstruct the energy spectrum of incident
neutrons.
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Thin-foil Proton Recoil (TPR) Gas Electron Multiplier (GEM)

+

Basic idea of compact NS-GEM detector: estimate energies of protons from TPR by measuring their specific energy
losses dE/dx and record proton tracks in the GEM active volume, to then reconstruct the energy spectrum of incident
neutrons.

Detection idea:
• Neutron collimation
• Conversion neutron  proton in polyethylene (PE)
• Proton passing through the GEM drift region
• Reconstruction of whole proton track for recoil angle and energy loss measurement
• Reconstruction of initial proton energy 𝐸𝑝 from dE/dx (energy loss) calibration curve

• Calculation of neutron energy based proton energy 𝐸𝑝 and scattering angle 𝜃



NS-GEM experiments at IGN-14 (IFJ PAN, Krakow)

 Experiments at the IGN-14 neutron generator (IFJ PAN, 
Krakow) with a 14 MeV D-T neutron beam
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 NS-GEM prototype:

Model by:
R. Kantor, PK
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[M. Scholz et al, JINST 2023]
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NS-GEM experiments at IGN-14 (IFJ PAN, Krakow)

 Experiments at the IGN-14 neutron generator (IFJ PAN, 
Krakow) with a 14 MeV D-T neutron beam

 NS-GEM prototype:

[M. Scholz et al, JINST 2023]

Model by:
R. Kantor, PK

GEM calibration with Fe55 source
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GEM detector
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 “Compact” 10 × 10 cm NS-GEM detector: high-energy protons (14 MeV) cannot be fully slowed-down in the GEM.

Proton Bragg curve & measurement strategy



Proton Bragg curve & measurement strategy
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 “Compact” 10 × 10 cm NS-GEM detector: high-energy protons (14 MeV) cannot be fully slowed-down in the GEM.

dE/dx approach 

Partial absorption before the Bragg peak



Polyethylene (PE) foil - neutron→proton conversion 
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 Conversion rate and proton energy-angle distribution exiting the polyethylene (PE) foil:

[V. Gerenton et al, J Fusion Energy 43, 10 (2024)]

• n-p conversion rate increases with PE 
thickness. Saturation for PE foils thicker than
~1 mm, due to significant neutron absorption,
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[V. Gerenton et al, J Fusion Energy 43, 10 (2024)]

• n-p conversion rate increases with PE 
thickness. Saturation for PE foils thicker than
~1 mm, due to significant neutron absorption,

• Trade-off between n-p conversion rate and loss
of resolution in the range [0.1 – 1.0 mm],
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Neutron transport in the NS-GEM prototype (MCNP)

 Neutron transport in the NS-GEM detector at the IGN-14 generator(MCNP):
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Top view

Collimator

GEM detector

MCNP 6.2
MeshTally: 2 mm x 2 mm x 1 mm
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 Neutron transport in the NS-GEM detector at the IGN-14 generator(MCNP):
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Top view

Collimator

GEM detector

Front viewSide view

MCNP 6.2
MeshTally: 2 mm x 2 mm x 1 mm
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Proton distribution in the NS-GEM prototype (MCNP) 

Protons from the 
n/p converter only

0 MeV – 3 MeV

z = 0 ± 0.05 cm~(60 – 90) deg

Top view

𝐸𝑛 =
𝐸𝑝

𝑐𝑜𝑠2𝜃

MCNP 6.2
MeshTally: 2 mm x 2 mm x 1 mm

 Protons in the NS-GEM detector at the IGN-14 exterimental stand:
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Proton distribution in the NS-GEM prototype (MCNP) 
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MCNP 6.2
MeshTally: 2 mm x 2 mm x 1 mm

 Protons in the NS-GEM detector at the IGN-14 exterimental stand:

3 MeV – 10 MeV

z = 0 ± 0.05 cm~(30 – 60) deg
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Proton distribution in the NS-GEM prototype (MCNP) 

Protons from the 
n/p converter only

0 MeV – 3 MeV 3 MeV – 10 MeV 10 MeV – 14 MeV

z = 0 ± 0.05 cm ~(0 – 30) deg~(30 – 60) deg~(60 – 90) deg

Top view

𝐸𝑛 =
𝐸𝑝

𝑐𝑜𝑠2𝜃

MCNP 6.2
MeshTally: 2 mm x 2 mm x 1 mm

 Protons in the NS-GEM detector at the IGN-14 exterimental stand:
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~8.7 x 10 -7 p/cm2/sn

Top view

Protons from the 
n/p converter

& 
construction elements

Collimator

GEM detector

~

 Protons in the NS-GEM detector at the IGN-14 exterimental stand:

MCNP 6.2
MeshTally: 2 mm x 2 mm x 1 mm

Proton distribution in the NS-GEM prototype (MCNP) 
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Top view
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 Protons in the NS-GEM detector at the IGN-14 exterimental stand:

MCNP 6.2
MeshTally: 2 mm x 2 mm x 1 mm

Proton distribution in the NS-GEM prototype (MCNP) 



Reconstruction of proton tracks
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 Proton measurements and analysis of the test results of the NS-GEM demonstrator



Reconstruction of proton tracks
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 Proton measurements and analysis of the test results of the NS-GEM demonstrator

 Filtering algorithm developed for the selection of meaningful proton tracks



Reconstruction of neutron spectrum
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 Calibration curve determined with Geant4 used to estimate initial proton energy.



Reconstruction of neutron spectrum
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 Calibration curve determined with Geant4 used to estimate initial proton energy.

 Neutron energy recovered using estimated proton energy and scattering angle.

Issue of energy reconstruction (energy shift) – likely related to readout electronics (crosstalk between the 
readout planes), but it needs to be studied further



NS-GEM energy response function
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0.5 mm, 10 cm gas depth
(+PE-GEM gap 3 cm)

 Impact of PE foil thickness and gas length on detector response function (for 1 bar ArCO2 pressure):



NS-GEM energy response function
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0.5 mm, 10 cm gas depth
(+PE-GEM gap 3 cm)

 Impact of PE foil thickness and gas length on detector response function (for 1 bar ArCO2 pressure):

0.1 mm, 10 cm gas depth
(+reduced gap 0.1 cm)



NS-GEM energy response function
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0.1 mm, 10 cm gas depth
(+reduced gap 0.1 cm)

0.1 mm, 50 cm gas depth
(+reduced gap 0.1 cm)

0.5 mm, 10 cm gas depth
(+PE-GEM gap 3 cm)

 Impact of PE foil thickness and gas length on detector response function (for 1 bar ArCO2 pressure):

 Energy resolution can be increased at the cost of efficiency (decreased count rate)



Perspectives: NS-GEM energy resolution
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 Expected neutron energy resolution FWHM as
a function of the ArCO2 (70-30, 1 bar) gas
length for incident 14 MeV neutrons:

[A. Jardin et al, Phys. Plasmas 31 (2024) 082514]
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 Expected neutron energy resolution FWHM as
a function of the ArCO2 (70-30, 1 bar) gas
length for incident 14 MeV neutrons:

 Solutions to get to the required resolution:
minimize proton scattering and/or get closer
to the Bragg peak

 Thinner PE foil, down to 0.1 mm or lower

 Extend depth of gas mixture ≳ 50 cm 
(larger detector)

 Work at higher gas pressure > 1 bar

[A. Jardin et al, Phys. Plasmas 31 (2024) 082514]
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Summary & perspectives

 NS-GEM prototype successfully built and actively being tested on 14 MeV neutron generator in Krakow,
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higher neutron flux on more powerful generator) could be foreseen,
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 We are open to collaboration on this topic: marek.scholz@ifj.edu.pl , axel.jardin@ifj.edu.pl
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