
Simulation and Control
Quantum middleware

Alessandro Candido

Qibo [arXiv: 2009.01845]

Qibo
backends

Simulating on
classical hardware

Clifford

Qibotn

Qibojit

tensorflow

numpy CPU/lightweight

CPU/GPU high
performance

Specialized

Executing on
quantum hardware Qibolab

Execution

https://arxiv.org/abs/2009.01845

State vector

Challenges

linear algebra

i.e. array library
performances

memory management

Approach

Adopt widespread and optimized frameworks,
to benefit from their expertise (software reuse).

Chisel the last layer on top of each framework,
to mold it on our use case.

Preserve whole information.

Backends mechanism

Structure the integration of the various libraries.

State Vector

Numba

CuPy

CuQuantum SVTensorFlow

NumpyLightweight

Autodiff support Optimized GPU
(NVIDIA)

Portable GPU
(NVIDIA & AMD)

Accelerated CPU

Common operations are implemented once and reused (when possible).

Plug the framework.

on advanced hardware

Results [arXiv: 2203.08826]

https://gist.github.com/migueldiascosta/0a0dbe061982bc4cc2bc7171785a4b86
https://arxiv.org/abs/2203.08826

on advanced hardware

Results [arXiv: 2203.08826]

https://gist.github.com/migueldiascosta/0a0dbe061982bc4cc2bc7171785a4b86
https://arxiv.org/abs/2203.08826

on advanced hardware

Results [arXiv: 2203.08826]

https://gist.github.com/migueldiascosta/0a0dbe061982bc4cc2bc7171785a4b86
https://arxiv.org/abs/2203.08826

on advanced hardware

Results [arXiv: 2203.08826]

https://gist.github.com/migueldiascosta/0a0dbe061982bc4cc2bc7171785a4b86
https://arxiv.org/abs/2203.08826

Automatic differentiation

Autodiff simulation is fundamental
to support QML investigation.

A dedicated differentiable backend
in simulation can considerably help
algorithms development.

Moving towards a single interface,
encompassing both simulation and
quantum hardware
implementations.

implementation

user

e.g. TensorFlow

...

Parameter shift rule

...

Tensorflow

PyTorch

JAX

qibo

Framework portability: implement in one, export derivatives.

for quantum machine learning (QML)

Clifford

Theorem 1 Given an n-qubit state , the
following are equivalent:

(i) can be obtained from by CNOT, Hadamard,
and phase gates only.
(ii) can be obtained from by CNOT, Hadamard,
phase, and measurement gates only.
(iii) is stabilized by exactly 2n Pauli operators.
(iv) is uniquely determined by

 or the group of Pauli operators that
stabilize

Instead of operating on the whole state vector, the state is
represented by a much more compressed tableau.

It still requires vectorized operations on the boolean entries, that
can be optimized in a similar fashion to the general state vector
approach.

Specialized execution.

∣ψ⟩ = U ∣ψ⟩

∣ψ⟩

∣ψ⟩ ∣0⟩ ⊗ n

∣ψ⟩ ∣0⟩ ⊗ n

∣ψ⟩
∣ψ⟩ S(∣ψ⟩) =

Stab(∣ψ⟩) ∩ P ​n

∣ψ⟩

​ ​ ​​ ​ ​ ​ ​ ​ ​

x ​11

⋮
x ​n1

x ​(n+1)1

⋮
x ​(2n)1

…

⋱
…
…

⋱
…

x ​1n

⋮
x ​nn

x ​(n+1)n

⋮
x ​(2n)n

z ​11

⋮
z ​n1

z ​(n+1)1

⋮
z ​(2n)1

…

⋱
…
…

⋱
…

z ​1n

⋮
z ​nn

z ​(n+1)n

⋮
z ​(2n)n

r ​1

⋮
r ​n

r ​n+1

⋮
r ​2n

Clifford
Benchmarks

Clifford
Benchmarks

Work in progress

Tensor network

Contractions

Optimized for observables.

Tensor network

Contractions

Optimized for observables.

Tensor network

Contractions

Optimized for observables.

Tensor network

Contractions

Optimized for observables.

Tensor network

Approximation
Based on singular value decomposition (SVD).

A very frequent matrix product state (MPS).

But also other ansatzes are used.

Workload distribution

beyond opt_einsum` `

for q in range(nq):

 c.apply_gate('H', q)

for q in range(0, nq, 2):

 c.apply_gate('CNOT', q, q + 1)

c.apply_gate('CNOT', 4, 7)

c.apply_gate('CNOT', 4, 1)

c.apply_gate('CNOT', 4, 0)

Tensor network

Approximation
Based on singular value decomposition (SVD).

A very frequent matrix product state (MPS).

But also other ansatzes are used.

Workload distribution

beyond opt_einsum` `

for q in range(nq):

 c.apply_gate('H', q)

for q in range(0, nq, 2):

 c.apply_gate('CNOT', q, q + 1)

c.apply_gate('CNOT', 4, 7)

c.apply_gate('CNOT', 4, 1)

c.apply_gate('CNOT', 4, 0)

QiboTN

QiboTN

Work in progress

Qibolab [arXiv: 2308.06313]

Quantum control

https://arxiv.org/abs/2308.06313

Qibolab - Interface
physicalinput

QPUElectronicsPulse sequenceCircuit Platform Driver

The input for a computation could be very
standard, at the level of a circuit. That kind of
interface is already defined by Qibo itself.

However, at a lower level, pulses are still a
standard-enough way to interact with hardware,
and these are defined by Qibolab.

Pulse sequence plot (from notebook?)

def create():

 instrument = DummyInstrument("myinstr", "0.0.0.0:0")

 channels = ChannelMap()

 channels |= Channel(

 "readout",

 port=instrument.ports("o1")

)

 ...

 return Platform(

 "myplatform",

 qubits={qubit.name: qubit},

 instruments={instrument.name: instrument},

 ...

)

Qibolab - Drivers
physicalinput

QPUElectronicsPulse sequenceCircuit Platform Driver

Qblox

Zurich
QM

QICK

 move 1,R0 # Start at marker output channel 0 (move 1 into R0)

 nop # Wait a cycle for R0 to be available.

loop: set_mrk R0 # Set marker output channels to R0

 upd_param 1000 # Update marker output channels and wait 1μs.

 asl R0,1,R0 # Move to next marker output channel (left-shift R0).

 nop # Wait a cycle for R0 to be available.

 jlt R0,16,@loop # Loop until all 4 marker output channels have been set once.

 set_mrk 0 # Reset marker output channels.

 upd_param 4 # Update marker output channels.

 stop # Stop sequencer. by Qblox

https://www.qblox.com/
https://www.zhinst.com/
https://www.quantum-machines.co/
https://github.com/openquantumhardware/qick
https://qblox-qblox-instruments.readthedocs-hosted.com/en/master/cluster/q1_sequence_processor.html#example

Qibosoq - Server on QICK [arXiv: 2310.05851]

physicalinput

QPUElectronicsPulse sequenceCircuit Platform Driver

Qibolab handles the whole connection, and takes care of fetching the single or multiple results.

For the single open source platform FPGA firmware

currently in Qibolab, there has been a dedicate
effort to define a suitable server, to optimize the
communication with the board.

⟶ Qibosoq

in collaboration with INFN-UNIMIB-BIQUTE

https://arxiv.org/abs/2310.05851

Platform dashboard

http://login.qrccluster.com:10000/

Qibocal

Qibocal

qq auto

qq acquire

qq fit

qq upload Share your
results

Analyze your
data

Acquire data
for your
protocols

Automated
protocols
execution

An owed mention

Thanks

Hybrid compilation

Target both simulation and hardware. Optimize classical and quantum instructions. Optimal for QML-like
hybrid applications.

https://docs.pennylane.ai/projects/catalyst/
https://docs.pennylane.ai/projects/catalyst/

Continuous variables

Strawberry Fields

Simulation

https://strawberryfields.ai/

