Ultracold atoms for quantum simulations

Gabriele Ferrari

Physics Department, University of Trento Pitaevskii Center for Bose-Einstein Condensation

BEC1 running since 2012, topics covered:

- Kibble-Zurek physics
- dynamics and interactions of quantized vortices
- relaxation dynamics in temperature-quenched Bose gases
- equation of state of weakly interacting Bose gases

BEC2 running since 2018, topics covered:

- coherently-coupled BECs
- magnetism in superfluid media
- engineering of novel phases of matter
- quantum simulation of quantum field models
- study of the properties of quantum vacuum

the experimental platform

from one component to spin mixtures

- U(1)xU(1) symmetry
- Three interaction parameters $g_{ij} = \frac{4\pi\hbar^2 a_{ij}}{m}$

$$\begin{split} i\hbar\partial_t\psi_{\downarrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\downarrow\downarrow}|\psi_{\downarrow}|^2 + g_{\downarrow\uparrow}|\psi_{\uparrow}|^2\right]\psi_{\downarrow}\\ i\hbar\partial_t\psi_{\uparrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\uparrow\uparrow}|\psi_{\uparrow}|^2 + g_{\downarrow\uparrow}|\psi_{\downarrow}|^2\right]\psi_{\uparrow} \end{split}$$

from one component to spin mixtures

... to Rabi-coupled spin mixtures

• U(1) symmetry

$$\begin{split} i\hbar\partial_t\psi_{\downarrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\downarrow\downarrow}|\psi_{\downarrow}|^2 + g_{\downarrow\uparrow}|\psi_{\uparrow}|^2\right]\psi_{\downarrow} - \frac{\hbar\Omega_R}{2}\psi_{\uparrow} \\ i\hbar\partial_t\psi_{\uparrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\uparrow\uparrow}|\psi_{\uparrow}|^2 + g_{\downarrow\uparrow}|\psi_{\downarrow}|^2\right]\psi_{\uparrow} - \frac{\hbar\Omega_R}{2}\psi_{\downarrow} \end{split}$$

 N_1 and N_2 not independently conserved

$$\delta g = \frac{g_{\downarrow\downarrow} + g_{\uparrow\uparrow}}{2} - g_{\uparrow\downarrow}$$
 Set the relevant energy scale

Energy scale	$\mu_B \delta B$	$\ll \hbar \Omega_R$	$< \left \delta g ight n$
Temperature			15 ÷ 60 nK
Frequency	10 Hz	100 ÷ 600 Hz	300 ÷ 1200 Hz
Magnetic field	5 µG	$50 \div 100 \ \mu G$	

... in a magnetically shielded environment

A. Farolfi et al., Rev. Scient. Instr. 90, 115114 (2019)

Scilight 2019, 471101 (2019)

175

miscible mixture, $\Omega = 0$: elementary excitations

Creation of correlated pairs of excitations via parametric amplification of vacuum if classical fluctuations are absent.

Faraday spectroscopy to measure the **dispersion relations** of the normal modes:

$$\omega_{d,s}(k) = \sqrt{\frac{\hbar k^2}{2m} \left(\frac{\hbar k^2}{2m} + \frac{2mc_{d,s}^2}{\hbar}\right)}$$

(a)

Massless density excitation Massless spin excitation

miscible mixture, $\Omega = 0$: elementary excitations

R. Cominotti et al., Phys. Rev. Lett. 128, 210401 (2022)

Faraday spectroscopy to measure the **dispersion relations** of the normal modes:

miscible mixture, $\Omega = 0$: elementary excitations

miscible mixture, <mark>Ω≠0,</mark>

The coupling breaks one U(1) symmetry by locking the relative phase, spin excitations becomes gapped: elementary manybody spin excitations acquire a massive character.

$$\varepsilon_s(k) = \sqrt{\left(\frac{\hbar^2 k^2}{2m} + \hbar\Omega\right) \left(\frac{\hbar^2 k^2}{2m} + \hbar\Omega + 2mc_s^2\right)}$$

miscible mixture, <mark>Ω≠0</mark>

Experimental demonstration of collective excitations with massive character

<u>Correlated pairs of massive quasiparticles created via parametric amplification of vacuum fluctuations</u> Acoustic analog of the **dynamical Casimir Effect**

$$\hbar\omega_p = \sqrt{\hbar\Omega_R(\hbar\Omega_R + 2\mu_s)} \qquad \epsilon(k) \simeq \hbar\omega_p + \frac{\hbar^2 k^2}{2M}; \qquad M = \frac{2m\omega_p \Omega_R}{\omega_p^2 + \Omega^2}$$

<mark>immiscible mixture</mark>, Ω**≠0**

The immiscible (repulsive) mixture in the presence of a coherent coupling is formally equivalent to a **spin ½ Ising model in transverse field**, at zero temperature.

Paramagnetic to ferromagnetic phase transition accessible via easily tunable experimental parameters (Ω , δ ,...)

characterization of the key quantities

 10^{0}

 $|\delta g| n/\Omega_R$

validate the fluctuation-dissipation theorem in the quantum regime.

R. Cominotti et al., Phys. Rev. X. 13, 021037 (2023)

characterization of hysteresis

Experiment: Adiabatic Rapid Passage from $|\!\downarrow\rangle$ or $|\!\uparrow\rangle$ to map ground state structure

R. Cominotti et al., Phys. Rev. X. 13, 021037 (2023)

• Parabolic dome due to density-dependent detuning $\delta_{eff} = \delta - n(x)(g_{\downarrow\downarrow} - g_{\uparrow\uparrow})$

False vacuum decay

- System in a **metastable** state of a **field** theory
- Decay occurs through stochastic generation of expanding true vacuum bubbles, driven by quantum fluctuations
- Universe might be in a metastable state, or could have already decayed in the true vacuum

Instanton theory (S.R. Coleman, PRD 15, 2929 (1977))

- Many-Body energy barrier (≠ external potential)
- Macroscopic tunneling of the field (single particle is prohibited by $\nabla^2 Z$)
- Quantum or thermal activation

First observation of nucleation of vacuum Bubbles

A. Zenesini et al., arXiv:2305.05225 Nature Physics (2024) online

- First experimental benchmark of the 1D instanton model.
- experimental extension is simple, opening to regimes not accessible with modern computers.

Spin superfluid for quantum simulation

Mixtures of ultracold atoms in different internal hyperfine states offer:

- field-like order parameter with vector character,
- choice of contact interaction parameters by mixing different hyperfine states,
- flexibility of engineering the spin-energy landscape via experimentally tunable parameters (Rabi freq., detuning and phase of the coherent coupling),
- trapping in 0, 1, 2 dimensions,
- preparation of the sample at zero temperature, where **fluctuations have a pure quantum origin**.

Ultracool physicists

Gabriele Ferrari Giacomo Lamporesi Diego Andreoni Chiara Rogora Cosetta Baroni Alessandro Zenesini Riccardo Cominotti