
Quantum information science with superconducting platform @ INFN

Andrea Giachero
University of Milano-Bicocca
INFN - Milano-Bicocca
Bicocca Quantum Technologies (BiQuTe) Centre

B i Q u T e



Superconductivity and qubits
B i Q u T e

Key elements for a superconducting qubits:

• Superconducting materials;

• Josephson junctions;

• rf- and dc-SQUID;

• 2D and 3D cavity resonators;

Different types of superconducting qubits:

• Phase-qubit;

• Flux qubit;

• Cooper Pair Box (CPB)/charge qubit:

• Transmon (Xmon);
• Fluxonium (also a flux qubit);

• Cat qubit;

• ...

SIMP
Development of Josephson  
Junctions for single photon 
counting

SQMS

(list probably incomplete) 

NQSTI and ICSC

Qub-IT
Development of qubit and JPA
for quantum sensing and quantum
computing
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KIDS_RD
Development of superconducting
materials for microresonators

DARTWARS
Development of parametric ampli�ers for
detectors and qubit readout

DEMETRA
Study of the e�ects of 
radioactivity in quantum circuits

BULLKID/BULLKID2
Superconducting microwave resonator
kinetic inductance detectors (MKIDs) for
elastic neutrino-nucleus sca�ering  

SUPERGALAX
Strongly interacting superconducting qubits
for detecting single photons

• INFN has extensive experience in resonators, Josephson junctions, and
cavities developed in the detector field, and more recently, in quantum
systems;

• Experience developed in collaboration with other institute in Italy: CNR,
FBK, INRiM, etc;

• Member of the newly created The National Quantum Science and
Technology Institute (NQSTI) and National Research Centre for High
Performance Computing, Big Data and Quantum Computing
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Development of qubits and parametric amplifiers @ INFN
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Qub-IT Project
PI: Claudio Gatti, institutes involved: INFN, FBK, CNR, TII web.infn.it/qub-it

• Development of high fidelity universal 2D and 3D quantum gates for quantum sensing and computing;
• Development of a quantum optimal control system using open source hardware/software;
• Development of a Josephson parametric amplifier for qubit readout and as entangled photons sources;

DARTWARS Project
PI: Andrea Giachero, insitutes involved: INFN, FBK, INRiM dartwars.unimib.it

• Development of broadband quantum limited traveling wave parametric amplifiers (TWPA);
• Multiplexed readout demonstration with qubits, cavities, and detectors (TESs, MKIDs, MMCs);
• Use of TWPA for microwave squeezing and entangled photons generations

JPA or
TWPAqubit
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Transmon qubit
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• Transmon qubit has become the most widely used
superconducting qubit Nature 549, 242–246 (2017)

• transmon regime: EJ/EC ∼ O(100)
EJ : Josephson energy

EC : charging energy

• less sensitive to higher-order effects of the 1/f charge noise;

• less sensitive to the problem of quasiparticle poisoning;

• Transmon in Xmon form Nature 508, 500–503 (2014)

• straightforward connectivity: its four arms allow
connections with separate elements.

• resonator for readout;
• control to excite the qubit state;
• control to tune the qubit frequency;
• quantum bus resonator

• fast control: separate control line Phys. Rev. Lett. 111, 080502

• long coherence: T2 ≃ 500µs npj Quantum Inf 8, 3 (2022)
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Qubit design and simulations
B i Q u T e

• Qubit design created by using qiskit-metal (IBM) and KQCircuits (IQM)

• target Hamiltonian definition;

• qubit lines and geometry definition;

• Electromagnetic Simulations with commercial tools

• Ansys HFSS for performing the eigenmode simulation and to
compute the resonant frequencies;

• Ansys Q3D for extracting capacitances and inductances;

• Quantization by using dedicated software packages:

• EPR (Energy Participation ratio) + HFSS npj Quantum Inf 7, 131 (2021)

• LOM (Lumped Oscillator Model) + Q3D arXiv:2103.10344 [quant-ph]

3D qubit Ansys Simulations

Drive line

Resonator

Flux line

Qubit

dc-SQUID

Feedline

2D qubit Ansys Simulations
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https://meetiqm.com/developers/kqcircuits/
https://doi.org/10.1038/s41534-021-00461-8
https://arxiv.org/abs/2103.10344


3D and 2D qubit productions
B i Q u T e

3D Transmon qubit

3D cavity

Junction

shunt capacitances

transmon

• Transmons in superconducting 3D cavity;

• Alternative approach for longer coherence time;

• First tests with 3D qubit fabricated at TII (Abu Dhabi, EAU);

• New Al cavities are being designed and fabricated by INFN;

• New transmons for 3D cavities are being developed by
CNR-IFN;

2D Xmon qubit

dc-SQUID

qubit #1

qubit #1

• Transmission/readout line (feedline) through λ/4 resonator;

• Driveline to enable faster qubit control;

• Flux-bias line to tune the energy spacing between states;

• Production foreseen in 2024 at FBK;

• Demonstrative two-qubit (not coupled) chip fabricated at NIST
(Superconductive Electronics Group):
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3D qubit characterization
B i Q u T e
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Ramsey spectroscopy

• Simulated resonant frequencies, capacitance, and coupling constant align well with the experimental results;

• Experimental decoherence Times: T1 = 8.7µs (relaxation time), T2 = 2.3µs (dephasing time);

• Relaxation time from intrinsic lifetime and Purcell effect: T1 ∼ 42µs;

• Underestimation of the participation ratios resulting due to limitations in the numerical mesh resolution.
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2D (complanar) qubit characterization
B i Q u T e
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• Qubit and cavity spectroscopy: simulations and measurements are in good agreement;

• Experimental decoherence Times: T1 = 4.3µs (relaxation time), T2 = 6.3µs (dephasing time);

• Relaxation time from intrinsic lifetime and Purcell effect: T1 ∼ 24µs;

• Low T1 related to low Qi measured for readout resonator ⇒ fabrication issue ⇒ new production at NIST during in 2024;

• Same design was adapted for FBK fabrication and produced soon;
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Next step: two-coupled qubit
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Two-qubit gates with 3D design Two-qubit gates with 2D design
Feedline

Resonators

dc-SQUIDs

quantum bus

Flux line Flux line

Drive 
line

Drive 
line

Design simulated

with qiskit-metal
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Current Status and Prospective
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What we learned ...

• Design and simulation of coplanar microresonators and
cavities ;

• Design and simulation of 2D and 3D superconducting
qubits ;

• Design and simulation of JPA and TWPA ;

• Fabrication of Josephson junction ;

• Fabrication of 3D cavities and coplanar
microresonators ;

• Fabrication of qubit and parametric amplifiers
(JPA/TWPA) ;

• Readout of qubits with discrete components (AWGs,
synthesizer, DAQs) ;

• Readout of qubits with programmable logic device
(RFSoC boards) ;

• Design and fabrication of optimized packaging for
hosting quantum devices ;

... and what we could do next.

• Design, simulation and fabrication of two-qubit gates
based on 2D and 3D transmon;

• Preliminary study on fluxonium qubit (longer coherence
times, higher anharmonicity, lower frequencies, which
reduces noise and improves stability);

• Design, simulation and fabrication of array of
interconnetect qubits;

• Optimal control of array of qubit using last generation of
programmable logic device;

• ... and then the sky is the limit;
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Enabling technologies for future projects



Tunable couplings
B i Q u T e

• Modular and versatile quantum interconnect hardware is
a key next step in the scaling of quantum information
platforms to larger size and greater functionality;

• Tunable couplers use an external control parameter to
turn on and off an effective coupling;

• In superconducting circuits an external control
parameters can be implemented through SQUID or
qubit;

• Tunable couplers that dynamically control the
qubit-qubit interaction, are an architectural
breakthrough that helps resolve many scalability issues;

npj Quantum Inf 9, 40 (2023)
Phys. Rev. X 11, 021058 (2021)
Phys. Rev. Lett. 113, 220502 (2014)
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https://doi.org/10.1103/PhysRevX.11.021058
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Multiqubits entangling gates
B i Q u T e

• Highly connected networks of qubits allow for
entangling qubits with reduced circuit depth;

• Single qubits can be coupled together by using an
intermediate electrical coupling circuit (coupler);

• Couplers can be implemented as fixed (resonators),
tunable (dc-squid, qubit) or parametric (dc-squid)
elements;

• All-to-all connectivity between qubits allows two-qubit
gates to be executed between any qubit pair;

Quantum Sci. Technol. 6 033001 (2021)
PRX Quantum 3, 040322 (2022)
Phys. Rev. Lett. 119, 180511 (2017)
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https://doi.org/10.1088/2058-9565/abe989
https://doi.org/10.1103/PRXQuantum.3.040322
https://doi.org/10.1103/PhysRevLett.119.180511


Qudits and Qudits gates
B i Q u T e

• Multi-level computational unit alternative to the
conventional 2-level qubit.

• Compared to qubit, qudit provides a larger state space
to store and process information’

• Provide reduction of the circuit complexity,
simplification of the experimental setup;

• The accuracy and efficiency of simple quantum circuits
and algorithms can be enhanced by qudit-based
architecture

• Possibility of driving higher-order transitions in a
transmon or fluxonium qubit;

Nat Commun 14, 1971 (2023
Phys. Rev. X 13, 021028 (2023)
arXiv:2303.04261 [quant-ph]
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