Tidal deformability of black holes surrounded by thin accretion disks

Enrico Cannizzaro

Istituto Superior Tecnico, Lisbon

In collaboration with Valerio De Luca, Paolo Pani

Tidal Deformability and Love Numbers

- Self-gravitating objects may be deformed in external tidal fields (e.g. companions in a binary system)
- Deformation is quantified using Tidal Love Numbers (TLNs), which describe the linear response of the body, akin to a "gravitational susceptibility"

• TLNs depend on the theory of gravity and the internal structure of the object, and they affect the orbital dynamics by leaving a footprint at 5PN order

Neutron Stars

Neutron stars can be tidally deformed, with a TLN dependent on their equation of state

 $\tilde{\Lambda} \propto O(EOS) \left(\frac{R_{NS}}{M_{NG}}\right)^{5}$

Gravitational potential of deformed body (Newtonian):

Neutron Stars

Neutron stars can be tidally deformed, with a TLN dependent on their equation of state

 $\tilde{\Lambda} \propto O(EOS) \left(\frac{R_{NS}}{M_{NS}}\right)^5$

Hinderer (2008)

GR case: perturbation theory - massless fields in curved spacetime

 $\phi, A_{\mu}, g_{\mu\nu}$

Equation of motion: $\mathcal{O}_s \psi_s = 0$

Matching at the star surface: ψ_s regular at $r = r_h$

$$\psi_s \propto r^{\ell+1} \left[1 + k_s^{(\ell)} \left(\frac{r}{r_h} \right)^{-2\ell+1} \right]$$

Tidal deformability of black holes

In D=4, the static TLNs of asymptotically flat BHs in General Relativity vanish.

Fragile condition. $k_2 \neq 0$ in a plethora of different scenarios:

Beyond GR theories

Cardoso+ (2017,2018), De Luca+(2023), Barura+(2024)

BH mimickers and exotic compact objects

Pani+(2015), Cardoso+ (2017, 2019), Herdeiro+(2020), Berti+(2024)

Hui+(2021), Kol+(2012), Cardoso+(2019), Rodriguez+(2023), Charalambous+(2023,2024), Ma+(2024)

Implications in fundamental physics: Tidal tests of general relativity!

Why so vacuum?

Accretion disks are ubiquitous in astrophysics: Matter (dust, plasma) spirals around the BH due to gravity

Can feature very high densities $(n_e \approx 10^{19} M_{\odot}/M \text{ cm}^{-3})$

• Less compact than neutron stars (more

deformable?)

cold, geometrically thin disk

hot, inflated thick disk

Advection Dominated accretion flow (quasi-spherical)

What is the deformability of a BH+disk system?

BH+thin disk geometry

"Non-linear superposition" of black hole and thin disk:

- Fully relativistic axisymmetric and static metric
- The disk stretches from the horizon to infinity, and vanish in the extremities
- Analytic expressions for the disk functions
- Density profile is astrophysically realistic (equatorial plane)

Model parameters of the disk:

meters
sk:
$$\tilde{b}$$
 $\varepsilon = M_{\rm disk}/M_{BH}$ mass of the disk compared to BH mass
location of the disk peak

Kotlarik+(2018,2022), *Chen*+(2023)

Tidal deformability of BHs with thin accretion disks

At leading order in ϵ :

Spin-0

Spin-1

 $b \rightarrow [r_{\rm ISCO}, 30M]$

Scaling $k_2 \propto \epsilon \tilde{b}^4$ is in agreement with the scaling of TLNs of dressed BHs in other environments (boson clouds, thin shells, Einstein clusters) De Luca+(2021), Duque+(2019,2021)

Cannizzaro+(2024), arXiv: 2408.14208

Environmental Effects vs Modified GR

Cannizzaro+(2024), arXiv: 2408.14208

Tidal disruption and frequency dependent TLNs

The accretion disks will get tidally disrupted at the Roche radius:

$$r_{Roche} = 2\gamma m_1 (1+\tilde{b}) \left[\frac{m_2}{m_1 (1+\epsilon)} \right]^{1/3} \text{ at a GW frequency } f_{cut} = \frac{1}{2\sqrt{2}\pi\gamma^{3/2}m_1} \sqrt{\frac{(1+\epsilon)(m_1+m_2)}{(1+\tilde{b})^3m_2}}$$

Proxy for frequency dependent tidal deformability

Large \tilde{b} : Large TLN but small

Roche frequency

De Luca+(2022)

1.0environment ----- $f_{\rm slope} = f_{\rm cut}/10$ 0.8 $\cdots f_{\rm slope} = f_{\rm cut}/5$ $\dots f_{\rm slope} = f_{\rm cut}$ 0.6 \mathcal{S} 0.40.2 vacuum 0.0 $\mathbf{2}$ 3 $\mathbf{5}$ 0 1 4 $f/f_{\rm cut}$

Detectability at ET and LISA: Fisher matrix analysis

 $\tilde{h}(f) = C_{\Omega} \mathscr{A}_{\text{PN}} e^{i\psi_{\text{PP}}(f) + i\psi_{\text{Tidal}}(f)}$

All tidal parameters can be measured with high accuracy with next generation detectors!

Cannizzaro+(2024), arXiv: 2408.14208

Conclusions

• Presence of a thin disk around a BH induce a non-vanishing tidal deformability

Physics implications: Such effect can easily jeopardize tidal tests of theories beyond GR and BH mimickers

implications: Disk parameters could be measured with high accuracy with LISA and

third generation detectors

Thank you!