Waveform modelling for I/EMRIs using a multiscale self-force approach

THE

Niels Warburton University College Dublin

1st TEONGRAV international workshop Sapienza University of Rome 18th September 2024

Compact binary parameter space

[Image credit: LISA Consortium Waveform Working Group]

Niels Warburton Man And Allen Waveform modelling for I/EMRIs

We need the phase error in the waveform to be 'small' \Longrightarrow we must include adiabatic and postadiabatic corrections

EMRIs will be very generic \Longrightarrow our models must span the full parameter space of eccentric, precessing systems

Our EMRI waveform models must be accurate, efficient and extensive

Search and parameter estimation requires millions of templates \Longrightarrow each waveform must be computed in less than 1 second

Gravitational self-force approach

[Image credit: Adam Pound]

- $\epsilon = 1/q = m_2/m_1 \ll 1$
- Small body perturbs spacetime:

$$
g_{\alpha\beta} = g_{\alpha\beta}^{\text{Kerr}} + \epsilon h_{\alpha\beta}^{(1)} + \epsilon^2 h_{\alpha\beta}^{(2)} + \dots
$$

• Perturbation affects m_2 's motion:

$$
\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon f^{\mu}_{(1)} + \epsilon^2 f^{\mu}_{(2)} + \dots
$$

Zeroth order: geodesics in Kerr

[Image created using the BHPToolkit KerrGeodesics package]

- constants $J_a = (m_1, \chi_1, E, L_z, Q)$
	- Energy *E*
	- angular momentum *Lz*
	- Carter constant *Q*
- phases $\varphi_A = (\varphi_r, \varphi_\theta, \varphi_\phi)$ with frequencies $\Omega_A(J_B)$

Simple ODEs:

$$
\frac{d\varphi_A}{dt} = \Omega_A(J_B)
$$

$$
\frac{dJ_A}{dt} = 0
$$

Post-adiabatic (multi-scale) expansion

• evolution due to the self-force:

$$
\frac{d\tilde{\varphi}_A}{dt} = \Omega_A(\tilde{J}_B)
$$

$$
\frac{d\tilde{J}_A}{dt} = \epsilon \left[F_A^{(0)}(\tilde{J}_B) + \epsilon F_A^{(1)}(\tilde{J}_B) + \mathcal{O}(\epsilon^2) \right]
$$

waveform:

$$
h_{\ell m} = \sum_{k^i} \left[\epsilon h_{\ell m k^i}^{(1)}(\tilde{J}_A) + \epsilon^2 h_{\ell m k^i}^{(2)}(\tilde{J}_A) + \mathcal{O}(\epsilon^3) \right] e^{-i(m\tilde{\varphi}_{\phi} + k^i \tilde{\varphi}_i)}
$$

• Secondary spin: (i) new slow parameters (ii) new precession phase • Write metric as product of slowly evolving amplitudes and a rapidly evolving phase:

$$
h_{\alpha\beta}^{(n)} = \sum_{k^A} h_{\alpha\beta}^{(n,k^A)}(J_A; x^i) e^{-ik^A \varphi_A} \qquad x^i = \{r, \theta, \phi\}
$$

• Substitute this into the Einstein field equations. By treating t as a function of (J_A,φ_B) time derivatives can be computed via:

$$
\partial_t = \sum_A \dot{\varphi}_A \partial_{\varphi_A} + \dot{J}_A \partial_{J_A}
$$

• Lots of extra detail... (gauge choice, regularisation via matched expansions, numerical methods, etc). The first calculation of $h^{(2)}_{\alpha\beta}$ took ~10 years to work through all the details. *αβ*

Near-identity averaging transformations

• What are those \tilde{J}_A variables? $\frac{dJ_A}{dt} = \epsilon \left[F_A^{(0)}(\tilde{J}_B) + \epsilon F_A^{(1)}(\tilde{J}_B) + \mathcal{O}(\epsilon^2) \right]$

$$
\frac{d\tilde{J}_A}{dt} = \epsilon \left[F_A^{(0)}(\tilde{J}_B) + \epsilon F_A^{(1)}(\tilde{J}_B) + \mathcal{O}(\epsilon^2) \right]
$$

Evolution of J_A depends on phases φ_{C} :

$$
\frac{dJ_A}{dt} = \epsilon \left[F_A^{(0)}(J_B, \varphi_C) + \epsilon F_A^{(1)}(J_B, \varphi_C) + \mathcal{O}(\epsilon^2) \right]
$$

• Introduce a near-identity (averaging) transformation (NIT):

$$
\tilde{J}_A = J_A + \epsilon Y_A^{(1)}(J_B, \varphi_C) + \epsilon^2 Y_A^{(2)}(J_B, \varphi_C) + \mathcal{O}(\epsilon^3)
$$

• Can choose $Y_A^{(n)}$ to remove dependency on the phase in the equations for \tilde{J}_A *A*

Near-identity averaging transformations

Lynch, van de Meent, NW, Witzany

Phase space trajectory computation goes from taking hours to to taking milliseconds

Offline step

• solve field equations for amplitudes $h_{lmk^i}^{(n)}$ and forcing functions $F_A^{(n-1)}$ on a grid of \tilde{J}_A values *lmki*

Online step

- solve ODEs for $\tilde{\varphi}_A$ and \tilde{J}_A
- Add up the mode amplitudes $h_{\ell m k^i}^{(n)}$ at each sample time *ℓmki*
- FastEMRIWaveforms (**FEW**) software package can compute a 2-year long waveform in $~\sim 10$ - $100\mathrm{ms}$

FastEMRIWaveforms (FEW)

$$
h_{\ell m} = \sum_{k^i} \left[\epsilon h_{\ell m k^i}^{(1)}(\tilde{J}_A) + \epsilon^2 h_{\ell m k^i}^{(2)}(\tilde{J}_A) + \mathcal{O}(\epsilon^3) \right] e^{-i(m\tilde{\varphi}_{\phi} + k^i \tilde{\varphi}_{i})}
$$

- The number of $h_{emki}^{(n)}$ that need to be summed at each time step can be in the thousands. *ℓmki*
- The waveform amplitudes vary slowly. These amplitudes are sampled on a sparse set of points, summed, and then upsampled
- GPU acceleration takes generation time down from minutes to milliseconds
- Relativistic adiabatic (OPA) Kerr equatorial model will be publicly available soon

Accuracy and post-adiabatic counting

phases:
$$
\tilde{\varphi}_A = \epsilon^{-1} \left[\varphi_A^{(0)}(\Omega_B) + \epsilon^0 \left(\varphi_A^{(1)}(\Omega_B) + \mathcal{O}(\epsilon) \right) \right]
$$

Adiabatic (0PA)

From the orbit averaged piece of first-order self-force $\langle f_{(1)}^{\alpha} \rangle$

 $\langle f_{(1)}^{\alpha} \rangle$ can be related to the fluxes, thus avoiding a local calculation of the self-force

0PA is sufficient for detection and rough parameter estimation for astrophysics of EMRIs of bright sources

Post-adiabatic order (1PA)

Two contributions:

- oscillatory pieces of the first order self-force $\breve{f}^{\alpha}_{(1)}$
- second-order orbit averaged self-force $\langle f_{(2)}^{\alpha} \rangle$

Needed for precision tests of GR Potential application to IMRIs Needed to extract all sources

Parameter space coverage at OPA

In FEW:

- generic orbits in Kerr: 5.5PN- $e^{\rm 10}$ approximation
- equatorial orbits in Kerr: full relativistic waveforms in time or frequency domain
- kludge models

Resonances (0.5PA)

[Image credit: Philip Lynch]

Niels Warburton Man Allen Allen Waveform modelling for I/EMRIs

 $\Omega_{r}/\Omega_{\theta}$ becomes momentarily rational

 $\, \Omega_{\! A} \,$ "jumps" slightly across the resonance

Leads to a significant

phase corrections

$$
\tilde{\varphi}_A = \epsilon^{-1} \varphi_A^{(0)}(\Omega_B) + \left[\epsilon^{-1/2} \varphi_A^{(1/2)}(\Omega_B) + \epsilon^0 \varphi_A^{(1)}(\Omega_B) + \mathcal{O}(\epsilon^{1/2}) \right]
$$

Niels Warburton Man Anthenorm Manus And Waveform modelling for I/EMRIs

Resonances (0.5PA) in FEW

Goal: modular framework in FEW. Given a resonance surface and jump conditions FEW can efficiently model any resonant phenomena.

1PA secondary spin effects

Piovano, Witzany Drummond, Hughes, Lynch et al Skoup[ý](https://arxiv.org/search/?searchtype=author&query=Skoup%C3%BD%2C+V) et al.

Niels Warburton MAA WAANAA WAVEFORM MODElling for I/EMRIS

Comparison with NR waveform from SXS collaboration

- Complete quasi-circular 1PA inspiral model with generic (precessing) secondary spin, linear primary spin and evolving m_1 and χ_1
- Implementation in FEW will be public soon

Complete inspiral-merger-ringdown models

Küchler, Compère, Durkan, Pound

 $q = 10$

- The multiscale expansion used in the inspiral breaks down at the ISCO
- Implement new expansions for the transition-to-plunge and plunge region
- First results appearing. Fast waveform generation speed maintained.

Gravitational wave memory

Memory in SXS:BBH:1124 (q=1)

In a forthcoming paper we:

- Calculate the memory from during inspiral for a quasicircular orbit into a Kerr BH $h_{\alpha}^{(1)}$ *αβ*
- Numerical and 5PN results

• GW memory leads to a permanent displacement of the test masses after the GW has passed

Gravitational wave memory

We also make the computation including $h^{(2)}_{\alpha\beta}$ and find good agreement with NR at, e.g., $q=10$ *αβ*

Niels Warburton MAN WARAMAN MAN Waveform modelling for I/EMRIs

Modelling IMRIs

- IMRIs span mass ratio range from $q\simeq 10$ to $q\simeq 10^4$
- NR simulations are extremely expensive at $q \gtrsim 20$
- Q: How will we test our self-force models at, e.g., $q = \{100, 1000\}$?
- A: our perturbative expansive gives us precise control of our phase error, so long as we can estimate the coefficient of the unknown term

$$
\tilde{\varphi}_A = \epsilon^{-1} \varphi_A^{(0)}(\Omega_B) + \epsilon^0 \varphi_A^{(1)}(\Omega_B) + \mathcal{O}(\epsilon)
$$

• Fortunately this can be achieved by comparison with NR simulations in the range $q = 1$ to $q \simeq 15$

Example: scaling with symmetric mass ratio *ν* for the flux

[Figures from van de Meent et al. arXiv:2303.18026]

Adding more physics

• So long as your extra physics acts on a longtime scale (or can be NIT'ed), the equations of motion become:

$$
\frac{d\tilde{\varphi}_A}{dt} = \Omega_A(\tilde{J}_B)
$$

$$
\frac{d\tilde{J}_A}{dt} = \epsilon \left[F_A^{(0)}(\tilde{J}_B) + \epsilon F_A^{(1)}(\tilde{J}_B) + \mathcal{O}(\epsilon^2) \right] + \kappa F_A^{(\kappa)}(\tilde{J}_B)
$$

- Examples include:
	- accretion disks
	- third-body perturbers (adds new resonances)
	- beyond-GR physics
- Once you have $F_A^{(k)}(\tilde{J}_B)$, the multiscale framework and the modular construction of FEW means you can generate waveforms quickly

EMRIs beyond GR

• A wide class of beyond-GR theories, e.g., linear-Gauss-Bonnet gravity, can be model by a secondary carrying a scalar charge

$$
G^{\alpha\beta}[h_{\alpha\beta}^{(1)}] = 8\pi m_2 \int \delta^{(4)}(x - x_p(\lambda))u^{\alpha}u^{\beta}g^{-1/2} d\lambda
$$

$$
\Box \phi^{(1)} = -4\pi dm_2 \int \delta^{(4)}(x - x_p(\lambda))g^{-1/2} d\lambda
$$

$$
F_A^{(\kappa)} \propto \langle \partial_t \phi^{(1)} \rangle
$$

By solving the scalar wave equation for eccentric orbits in Kerr we could carry out MCMC parameter estimation studies and explore constraints possible with LISA

Conclusions

- Using the post-adiabatic (multiscale) expansion we can compute $h^{(1)}_{\alpha\beta}$ and $h^{(2)}_{\alpha\beta}$
- There is a native, fast waveform generation scheme, which when combined with FEW gives EMRI waveforms in 10s of ms


```
[Movie credit: Philip Lynch]
```
- Post-adiabatic waveforms agree very remarkably with NR waveforms even for $q\simeq 10.$ This suggests we can model IMRIs with 1PA waveforms.
- Much of the Multiscale Self-Force (MSF) collaboration is pushing towards computing $h^{(2)}_{\alpha\beta}$ for a rotating primary *αβ*

Extra slides

Comparison with NR waveform from SXS collaboration

- Complete quasi-circular 1PA inspiral model with generic (precessing) secondary spin, linear primary spin and evolving $m^{}_1$ and χ_1
- Precession effects only enter the phase at 2PA (amplitudes effected at 1PA)

Waveform frame

Find agreement with 4.5PN for the total flux but not for the individual modes. Suggestions the calculations are in different frames

$$
G_{\alpha\beta}[\bar{g}_{\alpha\beta} + \epsilon h_{\alpha\beta}^{(1)} + \epsilon^2 h_{\alpha\beta}^{(2)}] = 8\pi T_{\alpha\beta}
$$

Field equations from e^n coefficients:

$$
\epsilon^{0}: \tG_{\alpha\beta}[\bar{g}] = 0
$$

\n
$$
\epsilon^{1}: \tG_{\alpha\beta}^{1}[h^{1}] = 8\pi T_{\alpha\beta}
$$

\n
$$
\epsilon^{2}: \tG_{\alpha\beta}^{1}[h^{2}] = -G_{\alpha\beta}^{2}[h^{1}, h^{1}]
$$

$$
G_{\alpha\beta}[\bar{g}_{\alpha\beta} + \epsilon h_{\alpha\beta}^{(1)} + \epsilon^2 h_{\alpha\beta}^{(2)}] = 8\pi T_{\alpha\beta}
$$

Field equations from ε^n coefficients:

$$
G_{\alpha\beta}[\bar{g}_{\alpha\beta} + \epsilon h_{\alpha\beta}^{(1)} + \epsilon^2 h_{\alpha\beta}^{(2)}] = 8\pi T_{\alpha\beta}
$$

 ϵ^0 : $G_{\alpha\beta}[\bar{g}] = 0$ $\epsilon^{1}:$ $G_{\alpha\beta}^{1}[h^{1R}] = 8\pi T_{\alpha\beta} - G_{\alpha\beta}^{1}[h^{1S}]$ ϵ^2 : $G_{\alpha\beta}^1[h^{2R}] = -\frac{G_{\alpha\beta}^2[h^1, h^1] - G_{\alpha\beta}^1[h^{2S}]}{2}$ $u^{\beta}\nabla_{\beta}u^{\alpha}=F^{\alpha}_{self}$ $\{\nabla h^{1R},\nabla h^{2R}\}$ Equations of motion Mino, Sasaki, Tanaka 1997 Quinn and Wald 1997 MiSaTaQuWa equations Pound 2012 Gralla 2012 Field equations from ε^n coefficients: - Non-compact - Diverges at the particle

We perform a two-timescale expansion by introducing a "slow time" $\tilde{t} = \epsilon t$. This allows for a frequency domain decomposition:

$$
\Box^{0} R_{lm}^{2R} = 2\delta^{2} G_{lm}^{0} - \Box^{0} R_{lm}^{2P} - \Box^{1} R_{lm}^{1} \qquad h = \sum_{lm} R_{lm}(r) Y_{lm}(\theta, \varphi) e^{-i\omega_{m}t}
$$

$$
\partial_{\tilde{t}} h^{1} = \dot{r}_{0} \partial_{r_{0}} h^{1}
$$

As $\dot{r}_0 \propto \dot{\mathcal{E}} \propto \epsilon$ we see that a contribution from the (parametric derivative of the) first-order metric perturbation contributes to the second-order source $\dot{r}_0 \propto \dot{\mathcal{E}} \propto \epsilon$

****** For more complex orbital configurations we will need to compute parametric derivatives with respect to, e.g., (p, e, x_{inc})