MODELING AND OBSERVATIONAL STATUS OF BLACK HOLE VIBRATIONAL SPECTRA

TEONGRAV I 18/09/2024 Sapienza Università di Roma

Gregorio Carullo

- **Black holes coalescences** and what can we learn from them
- Black hole **ringdown**: perturbative picture, nonlinear picture, their merger
- Observational black hole **spectroscopy**: the LVK search
- Recent modeling **developments** (non-linear, non-circular, ...)
- Prospects with **future** gravitational-wave **detectors**

CONTENT

What have we observed?

GRAVITATIONAL WAVE SIGNALS

LVC, PRL 119, 141101 (2017)

2

What have we inferred?

 \bigcirc \bigcirc

 \bigcirc \bigcirc

GW200216_220804

GW191204_171526

 \bigcirc

GW200210_092254

 \bigcirc

GW191204_110529

0

 \bigcirc

GW200112_155838

 \bigcirc \bigcirc

GW200209_085452

 \bigcirc

GW200225_060421

0

GW200302_015811

()

GW200306_093714

 \bigcirc

0

GW200129_065458

 \bigcirc

GW200219_094415

0

GW200308_173609

GW200224_222234

GW200208_222617

GW200322_091133

GW200208_130117

00

GW200202_154313

GW200220_061928

 \bigcirc

 \bigcirc

Zoheyr Doctor / CIERA / LIGO-Virgo Collaboration

FOURTH OBSERVING RUN

• Instruments are online again:

observing.docs.ligo.org/plan

A CROWDED FUTURE

Credits: <u>Broekgaarden</u>

What do we want to learn from these signals?

• **Searching** for new physics:

SCIENCE GOALS

- **Searching** for new physics:
 - Remnant compact object **nature** Are we really observing black holes?

SCIENCE GOALS

- **Searching** for new physics:
 - Remnant compact object **nature** Are we really observing black holes?
 - Black Hole Kerr-ness conjecture (final state, "no-hair theorem",...) Do observed black holes have additional hairs, apart from (M,a)?

- **Searching** for new physics:
 - Remnant compact object **nature** Are we really observing black holes?
 - Black Hole Kerr-ness conjecture (final state, "no-hair theorem",...) Do observed black holes have additional hairs, apart from (M,a)?
 - General Relativity predictions for spectral emission Is General Relativity a correct description of gravity at high curvatures?

• Gauge the contribution of missing physics for precision tests:

MISSING PHYSICS?

MISSING PHYSICS?

- Gauge the contribution of missing physics for precision tests:
 - Cosmological expansion, dark matter
 - Accretion, magnetic fields, electric charge

Barausse, Cardoso, Pani, PRD 89 (2014) 104059

MISSING PHYSICS?

- Gauge the contribution of missing physics for precision tests:
 - Cosmological expansion, dark matter
 - Accretion, magnetic fields, electric charge
- Ringdown searches for new physics in the LVK band *expected* to be clean

Inspiral (EMRIs especially) likely less so:

• • •

Kavanagh+, 1805.09034, Speri+, 2207.10086, Bamber+, 2210.09254, Bertone+, 2404.08731 Garg+, 2402.14058, Aurrekoetxea+, 2409.01937 Barausse, Cardoso, Pani, PRD 89 (2014) 104059

Cannizzaro+, 2405.05315 (charged+plasma) Leong+, 2308.03250 (scalar field bubble), Aurrekoetxea+, 2409.01937 (DM spikes)

MISSING PHYSICS?

• Ringdown searches for new physics in the LVK band *likely* clean

Spieksma, Cardoso, Carullo, Duque, Della Rocca, 2409.05950

For astro values of DM compactness, even EMRI ringdown in Sgr A* with LISA clean

Full NR? DM model dependence?

KERR BLACK HOLE PROPERTIES

This workshop: Cannizzaro, Chakraborty

Tidal deformations

Quasi-normal spectrum

Multipole moments

$$M_{2n} = M(-a^2)^n, S_{2n+1} = Ma(-a^2)^n$$

$\epsilon = 0$

Horizon absorption

This workshop: Datta, Chiaramello-Gamba

BLACK HOLE SPECTROSCOPY

BLACK HOLE SPECTROSCOPY

Physics near the black hole horizon: from tests of GR to quantum gravity $\mathbf{3.1}$ New Horizons for Fundamental Physics with LISA Maggiore+, JCAP (2020)

Arun+, LLR (2022)

Max Planck Institute for Gravitational Physics

Nonlinear dynamics

for Gravitational Physics

Nonlinear dynamics

Dynamical horizon

Max Planck Institute for Gravitational Physics

The "sound" of a black hole

 Max Planck Institute for Gravitational Physics

• In terms of gravitational wave multipoles:

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) \epsilon$$

 $e^{i\omega_{lmn}t}e^{-t/\tau_{lmn}}$

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta,\phi) e^{i\omega_{lmn}t} e^{-t/\tau_{lmn}}$$

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e^{i\theta t}$$

Perturbation theory predicts spectru

In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")

 $e^{i\omega_{lmn}t}e^{-t/\tau_{lmn}}$

um.

Penrose, 1982 (see Loutrel+, 2008.11770)

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e$$

- Perturbation theory predicts spectrum. In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")
- Measure $\{\omega_1 = \omega_{220}, \tau_1 = \tau_{220}\} \rightarrow \{M, a\}$

 $e^{i\omega_{lmn}t}e^{-t/\tau_{lmn}}$

Penrose, 1982 (see Loutrel+, 2008.11770)

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e$$

- Perturbation theory predicts spectrum. In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")
- Measure $\{\omega_1 = \omega_{220}, \tau_1 = \tau_{220}\} \rightarrow \{M, a\}$

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e$$

- Perturbation theory predicts spectrum. In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")
- Measure $\{\omega_1 = \omega_{220}, \tau_1 = \tau_{220}\} \rightarrow \{M, a\}$

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e$$

- Perturbation theory predicts spectrum. In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")
- Measure $\{\omega_1 = \omega_{220}, \tau_1 = \tau_{220}\} \rightarrow \{M, a\}$

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e$$

- Perturbation theory predicts spectrum. In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")
- Measure $\{\omega_1 = \omega_{220}, \tau_1 = \tau_{220}\} \rightarrow \{M, a\}$

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e^{i\theta_{lmn}}$$

- Perturbation theory predicts spectrum. In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")
- Measure $\{\omega_1 = \omega_{220}, \tau_1 = \tau_{220}\} \rightarrow \{M, a\}$ Measure { $\omega_2 = \omega_{330}$ } (now predicted) \implies test General Relativity

• In terms of gravitational wave multipoles:

$$h_{+} - i h_{\times} = -\frac{M}{r} \sum_{l,m,n} \mathcal{A}_{lmn} S(\theta, \phi) e^{i\theta_{lmn}}$$

- Perturbation theory predicts spectrum. In Kerr, { $\omega_{lmn}(M, a), \tau_{lmn}(M, a)$ } ("final state conjecture")
- Measure $\{\omega_1 = \omega_{220}, \tau_1 = \tau_{220}\} \rightarrow \{M, a\}$ Measure { $\omega_2 = \omega_{330}$ } (now predicted) \implies test General Relativity
- "Universal" prediction: "easy" to add **beyond-GR** effects

Is this picture applicable to comparable-masses binary coalescences?

Buonanno, Damour, gr-qc/0001013 Buonanno, Cook, Pretorius, gr-qc/0610122, Berti+, gr-qc/0703053, ...

 $f(t) = \dot{\phi}(t)$

 $f(t) = \dot{\phi}(t)$

MODEL SYSTEMATICS

• Later times: **better QNM description**, but SNR loss

MODEL SYSTEMATICS

- Later times: **better QNM description**, but SNR loss
- Can extend with multiple overtones, but beware of overfitting:

Giesler+, 1903.08284

- Later times: **better QNM description**, but SNR loss
- Can extend with multiple overtones, but beware of overfitting:

Buonanno-Cook-Pretorius, gr-qc/0610122 Berti+, gr-qc/0703053

Baker+, 0805.1428, Damour-Nagar, 1406.0401

Giesler+, 1903.08284

- Later times: **better QNM description**, but SNR loss
- Can extend with multiple overtones, but beware of overfitting:

Giesler+, 1903.08284

• "Stability of amplitudes" & "Smoothness across parameter space"

- Later times: **better QNM description**, but SNR loss
- Can extend with multiple overtones, but beware of overfitting:

• Earlier times: non-linearities/transient contributions, not fully analytically understood (only phenom.)

Giesler+, 1903.08284

• "Stability of amplitudes" & "Smoothness across parameter space"

- Later times: **better QNM description**, but SNR loss
- Can extend with multiple overtones, but beware of overfitting:

- Earlier times: non-linearities/transient contributions, not fully analytically understood (only phenom.)
 - Overtones are there Zhang, Berti, Cardoso, 1305.4306

Giesler+, 1903.08284

• "Stability of amplitudes" & "Smoothness across parameter space"

- Later times: **better QNM description**, but SNR loss
- Can extend with multiple overtones, but beware of overfitting:

- Earlier times: non-linearities/transient contributions, not fully analytically understood (only phenom.)
 - Overtones are there Zhang, Berti, Cardoso, 1305.4306
 - But "price to pay" when gaining SNR analysing early times

Giesler+, 1903.08284

• "Stability of amplitudes" & "Smoothness across parameter space"

London+, 1404.3197, Forteza+, 2005.03260, Baibhav+, 2302.03050, Nee+, 2302.06634, Cheung+, 2310.04489

- Spectroscopy from binary mergers, systematics-plagued measurements:
 - "Ringdown start time" uncertainty (ill-defined)
 - **Dynamical evolution** of the system

WARNING AND GOAL

- Spectroscopy from binary mergers, systematics-plagued measurements:
 - "Ringdown start time" uncertainty (ill-defined)
 - **Dynamical evolution** of the system
- To extract **QNMs**: need to carefully select regime of validity

WARNING AND GOAL

- Spectroscopy from binary mergers, systematics-plagued measurements:
 - "Ringdown start time" uncertainty (ill-defined)
 - **Dynamical evolution** of the system
- To extract **QNMs**: need to carefully select regime of validity
 - Affect measurement precision, but also physical interpretability (extract true QNM vs fit with a bunch of damped sinusoids)

Observational black hole spectroscopy

GW150914: THE DAY WE SAW A BLACK HOLE RINGING

LVC, Phys. Rev. Lett. 116, 221101 (2016)

GW150914: THE DAY WE SAW A BLACK HOLE RINGING

LVC, Phys. Rev. Lett. 116, 221101 (2016)

• Time-domain approach:

White noise, no-merger: Del Pozzo, Nagar, 1606.03952 Coloured noise: Carullo, Del Pozzo, Veitch, 1902.07527 Full solution: Isi, Farr, 2107.05609 Also: Capano+, 2105.05238 | Finch-Moore, 2108.09344 Crisostomi+, 2305.18528 | Pacilio+, 2404.11373

- Time-domain approach:
 - Isolate ringdown portion
 - Avoid spurious frequencies from abrupt t_{start}
 (Gibbs phenomena)

White noise, no-merger: Del Pozzo, Nagar, 1606.03952 Coloured noise: Carullo, Del Pozzo, Veitch, 1902.07527 Full solution: Isi, Farr, 2107.05609 Also: Capano+, 2105.05238 | Finch-Moore, 2108.09344 Crisostomi+, 2305.18528 | Pacilio+, 2404.11373

• Inspiral predicts GR spectrum

• Inspiral predicts GR spectrum

Carullo, Del Pozzo, Veitch, 1902.07527

• Inspiral predicts GR spectrum

Carullo, Del Pozzo, Veitch, 1902.07527

• Inspiral predicts GR spectrum

- Inspiral predicts GR spectrum
- Agnostic frequency reconstruction

- Inspiral predicts GR spectrum
- Agnostic frequency reconstruction
- **Probability** agnostic mode agrees with GR

- Inspiral predicts GR spectrum
- Agnostic frequency reconstruction
- **Probability** agnostic mode agrees with GR

- Inspiral predicts GR spectrum
- Agnostic frequency reconstruction
- **Probability** agnostic mode agrees with GR

The LVK search

Ringdown Gravitational Wave Catalog

LVK, 2021

GW200129A

GW190519A GW190521A GW190521B GW190727A GW190728A GW190910A

GW200224B

Giada Caneva

GW200311B

reflecting additional effects, e.g. symmetries

MODELS

• "*Ringdown dissection*": start **agnostic**, add increasingly **more information**,

reflecting additional effects, e.g. symmetries

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn} \, S_{\ell mn}(\iota,arphi) \, e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]} \ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn} \, S^*_{\ell mn}(\pi-\iota,arphi) \, e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

MODELS

• "*Ringdown dissection*": start **agnostic**, add increasingly **more information**,

 $-\phi^-_{\ell mn}]$

• "Ringdown dissection": start agnostic, add increasingly more information, reflecting additional effects, e.g. symmetries

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn} \, S_{\ell mn}(\iota,arphi) \, e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]} \ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn} \, S^*_{\ell mn}(\pi-\iota,arphi) \, e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

MODELS

• Agnostic: { $f_{lmn}, \tau_{lmn}, A_{lmn}, \phi_{lmn}$ }

 $-\phi^-_{\ell m n}]$

reflecting additional effects, e.g. symmetries

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn} \, S_{\ell mn}(\iota,arphi) \, e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]} \ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn} \, S^*_{\ell mn}(\pi-\iota,arphi) \, e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

MODELS

• "Ringdown dissection": start agnostic, add increasingly more information,

- Agnostic: { $f_{lmn}, \tau_{lmn}, A_{lmn}, \phi_{lmn}$ }
- **Kerr**: { $f_{lmn}(M_f, a_f), \tau_{lmn}(M_f, a_f)$ }

 $-\phi^-_{\ell m n}]$

reflecting additional effects, e.g. symmetries

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn} \, S_{\ell mn}(\iota,arphi) \, e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]} \ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn} \, S^*_{\ell mn}(\pi-\iota,arphi) \, e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

MODELS

• "*Ringdown dissection*": start agnostic, add increasingly more information,

- Agnostic: { $f_{lmn}, \tau_{lmn}, A_{lmn}, \phi_{lmn}$ }
- **Kerr**: { $f_{lmn}(M_f, a_f), \tau_{lmn}(M_f, a_f)$ }
- Kerr + pert. sym: $A^{-} = (-1)^{\ell} A^{+}, \phi^{-} = -\phi^{+}$

 $-\phi^-_{\ell m n}$

• "*Ringdown dissection*": start agnostic, add increasingly more information, reflecting additional effects, e.g. symmetries

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn} \, S_{\ell mn}(\iota,arphi) \, e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]} \ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn} \, S^*_{\ell mn}(\pi-\iota,arphi) \, e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

Kamaretsos+, London+, Baibhav+, Forteza+, Cheung+, Carullo+, Zertuche+, Pacilio+

MODELS

- Agnostic: { $f_{lmn}, \tau_{lmn}, A_{lmn}, \phi_{lmn}$ }
- **Kerr**: { $f_{lmn}(M_f, a_f), \tau_{lmn}(M_f, a_f)$ }
- Kerr + pert. sym: $A^{-} = (-1)^{\ell} A^{+}, \phi^{-} = -\phi^{+}$

 $-\phi^-_{\ell m n}$,

• Kerr + binary: $A_{\ell mn}(q,\chi_1,\chi_2)$

reflecting additional effects, e.g. symmetries

"Weak no-hair tests" with a single mode

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn}\,S_{\ell mn}(\iota,arphi)\,e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]}\ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn}\,S^*_{\ell mn}(\pi-\iota,arphi)\,e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

Kamaretsos+, London+, Baibhav+, Forteza+, Cheung+, Carullo+, Zertuche+, Pacilio+

MODELS

• "*Ringdown dissection*": start agnostic, add increasingly more information,

 $\left(\frac{-}{\ell mn} \right)$

- **Agnostic**: { f_{lmn} , τ_{lmn} , A_{lmn} , ϕ_{lmn} }
- **Kerr**: { $f_{lmn}(M_f, a_f), \tau_{lmn}(M_f, a_f)$ }
- Kerr + pert. sym: $A^{-} = (-1)^{\ell} A^{+}, \phi^{-} = -\phi^{+}$

 $-\phi^-_{\ell m n}$

• **Kerr + binary**: $A_{\ell mn}(q, \chi_1, \chi_2)$

Pacilio, Wed 15:20, Amaldi

- reflecting additional effects, e.g. symmetries
- Less information: more **agnostic**, catch **generic** GR deviations. However, less sensitive: larger SNR to catch deviations

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn} \, S_{\ell mn}(\iota,arphi) \, e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]} \ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn} \, S^*_{\ell mn}(\pi-\iota,arphi) \, e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

Baker+, 0805.1428, Damour-Nagar, 1406.0401, Pompili+, 2303.18039

MODELS

• "*Ringdown dissection*": start agnostic, add increasingly more information,

 $(\frac{-}{\ell mn})$

 $-\phi^-_{\ell m n}$,

13

- Agnostic: {f_{lmn}, τ_{lmn}, A_{lmn}, φ_{lmn}}
 Kerr: {f_{lmn}(M_f, a_f), τ_{lmn}(M_f, a_f)}
 Kerr + pert. sym: A⁻ = (-1)^ℓA⁺, φ⁻ = -φ⁺
- Kerr + binary: $A_{\ell mn}(q, \chi_1, \chi_2)$ Phenom. fits: $A_{\ell m}(t, q, \chi_1, \chi_2)$

- reflecting additional effects, e.g. symmetries
- Less information: more **agnostic**, catch **generic** GR deviations. However, less sensitive: larger SNR to catch deviations

$$h_+ + ih_ imes = rac{M_f}{D_L} \sum_{\ell=2}^\infty \sum_{m=-\ell}^{+\ell} \sum_{n=0}^\infty \ (h_{\ell m n}^+ + h_{\ell}^-)$$

$$egin{aligned} h^+_{\ell mn} &= \mathcal{A}^+_{\ell mn} \, S_{\ell mn}(\iota,arphi) \, e^{i[(t-t_{\ell mn}) ilde{\omega}_{\ell mn}+\phi^+_{\ell mn}]} \ h^-_{\ell mn} &= \mathcal{A}^-_{\ell mn} \, S^*_{\ell mn}(\pi-\iota,arphi) \, e^{-i[(t-t_{\ell mn}) ilde{\omega}^*_{\ell mn}-arphi)} \end{aligned}$$

Brito+, 1805.00293

pSEOB = last + inspiral information

MODELS

• "*Ringdown dissection*": start agnostic, add increasingly more information,

 $\binom{-}{\ell m n}$

 $-\phi^-_{\ell m n}$,

- Agnostic: {f_{lmn}, τ_{lmn}, A_{lmn}, φ_{lmn}}
 Kerr: {f_{lmn}(M_f, a_f), τ_{lmn}(M_f, a_f)}
 Kerr + pert. sym: A⁻ = (-1)^ℓA⁺, φ⁻ = -φ⁺
- Kerr + binary: $A_{\ell mn}(q, \chi_1, \chi_2)$ Phenom. fits: $A_{\ell m}(t, q, \chi_1, \chi_2)$

BLACK HOLE SPECTROSCOPY: RESULTS

- Ringdown catalog:
 - Searches for multiple
 ("higher") modes
 - Searches for GR deviations
 - Data characterisation

. . .

- All events **consistent** with remnant **Kerr black hole**.
- Damour-Nagar, 1406.0401, London+, 1801.08208 Brito+, 1805.00293, **Gennari, Carullo, Del Pozzo, 2312.12515**

- GW150914 -
- GW170729 —
- GW170823 —
- GW190503-185404
- GW190519-153544 -
 - GW190521 —
- GW190521-074359 -
- GW190602-175927 -
- GW190706-222641 -
- GW190727-060333 -
- GW190828-063405 -
- GW190910-112807 –
- GW190915-235702 —
- GW191222-033537 -
- GW200129-065458 -
- GW200224-222234 -
- GW200311-115853 -

LVC, 2010.14529, 2112.068

861	
20	

TESTS OF GENERAL RELATIVITY WITH GWTC-3

- **Bounds on deviations** from the GR spectrum.
- **Deviations** parameterized as:

$$\omega = \omega^{Kerr} \cdot (1 + \delta\omega)$$
$$\tau = \tau^{Kerr} \cdot (1 + \delta\tau)$$

TESTS OF GENERAL RELATIVITY WITH GWTC-3

- **Bounds on deviations** from the GR spectrum.
- **Deviations** parameterized as:

$$\omega = \omega^{Kerr} \cdot (1 + \delta\omega)$$
$$\tau = \tau^{Kerr} \cdot (1 + \delta\tau)$$

 $\log B_{GR}^{modGR} = -0.9$ pyRing

Carullo, Del Pozzo, Veitch, 1902.07527, Isi, Farr, 2107.05609.

pSEOB

Brito, Buonanno, Ghosh, Maggio, Silva+ 1805.00293, 2104.01906, 2212.09655

LVC, 2010.14529, 2112.06861

1.000GW150914 GW200129_065458 hierarchically 0.625 combined joint posterior $\delta \hat{ au}_{220}$ 0.250 -0.125-0.500 $\begin{array}{c} 0.250\\ \delta \hat{f}_{220} \end{array}$ 1.000 -0.1250.625

What about multiple modes?

allowing to perform "clean no-hair" tests with Kerr templates?

Have we measured multiple quasinormal modes?

Have we measured multiple quasinormal modes?

Not yet.

• Extensive debate on multiple QNMs detection claims

Isi+, 1905.00869 | Cotesta+ 2201.00822 Isi, Farr, 2202.02941 | Finch-Moore, 2205.07809 Carullo+, 2310.20625 | Crisostomi+ 2305.18528, Wang+, 2310.19645 | Capano+, 2105.05238, LVK, 2112.06861 | Siegel+, 2307.11975, ...

- Extensive debate on multiple QNMs detection claims
- Analysis

 - Agreement among different analysis setup with same inputs (overtones $\leq 2\sigma$)

Isi+, 1905.00869 | Cotesta+ 2201.00822 Isi, Farr, 2202.02941 | Finch-Moore, 2205.07809 Carullo+, 2310.20625 | Crisostomi+ 2305.18528, Wang+, 2310.19645 | Capano+, 2105.05238, LVK, 2112.06861 | Siegel+, 2307.11975, ...

• Initially discrepancies (incomplete analyses, noise estimation, sampling rate, ...)

- Extensive debate on multiple QNMs detection claims
- Analysis

 - Agreement among different analysis setup with same inputs (overtones $\leq 2\sigma$)
- Modeling systematics (interpretation)

Isi+, 1905.00869 | Cotesta+ 2201.00822 Isi, Farr, 2202.02941 | Finch-Moore, 2205.07809 Carullo+, 2310.20625 | Crisostomi+ 2305.18528, Wang+, 2310.19645 | Capano+, 2105.05238, LVK, 2112.06861 | Siegel+, 2307.11975, ...

• Initially discrepancies (incomplete analyses, noise estimation, sampling rate, ...)

- Extensive debate on multiple QNMs detection claims
- Analysis

 - Agreement among different analysis setup with same inputs (overtones $\leq 2\sigma$)
- **Modeling systematics** (interpretation)
 - Claimed detections close to merger: not a spectroscopy measurement
 - **Coupling** of statistical and systematic uncertainties (often ignored on t_{start})
 - No inclusion of eccentric or (often) precessing configurations

Isi+, 1905.00869 | Cotesta+ 2201.00822 Isi, Farr, 2202.02941 | Finch-Moore, 2205.07809 Carullo+, 2310.20625 | Crisostomi+ 2305.18528, Wang+, 2310.19645 | Capano+, 2105.05238, LVK, 2112.06861 | Siegel+, 2307.11975, ...

• Initially discrepancies (incomplete analyses, noise estimation, sampling rate, ...)

Way forward?

Stat: marginalise Sys: model!

Way forward?

BEYOND THE CIRCULAR PICTURE

• To overcome these issues, need to take into account: noncircular and spin-precession effects

Samsing+, Nature 603, 237–240 (2022)

Ecc. signatures claimed in:

Gamba+, Nat. Astro. (2022), Gayathri+, Nat. Astro. (2022) Romero-Shaw, APJ (2022), Gupte+, 2404.14286

BEYOND THE SPHERICAL PICTURE

Focusing on QNM modeling. For IMR see: O'Shaughnessy, 1109.5224, Schmidt+, 1408.1810, Gamba+, 2111.03675, Thompson+, 2312.10025, Ramos-Buades+, 2303.18046, ... 17

• To overcome these issues, need to take into account: noncircular effects

- To overcome these issues, need to take into account: noncircular effects
 - No IMR template currently includes eccentricity corrections to merger-ringdown
 - Decreased search sensitivity for medium/high eccentricity

Shubagata+ (GC), forthcoming

• To overcome these issues, need to take into account: noncircular effects

Regular class of variables

Not surprising: Radia+, 2101.11015

• To overcome these issues, need to take into account: noncircular effects

Regular class of variables

Albanesi+, 2305.19336 Carullo+, 2309.07228

• To describe generic orbits, switch to (E, J) $E(t) = E_0^{\text{ADM}} - \int_{t_0}^t \dot{E}(t')dt'$ $J(t) = J_0^{\text{ADM}} - \int_{t}^{t} \dot{J}(t')dt',$

> $j = J/(\nu M^2)$ h := E/M $\hat{E}_{\text{eff}}(h,\nu) = 1 + (h^2 - 1)/(2\nu),$

$$\hat{b}_{\rm mrg} \equiv \frac{j_{\rm mrg} h(\hat{E}_{\rm eff}^{\rm mrg}, \nu)}{\hat{E}_{\rm eff}^{\rm mrg}}$$

18

• To overcome these issues, need to take into account: noncircular effects

Regular class of variables

Albanesi+, 2305.19336 Carullo+, 2309.07228

New proposal

NONCIRCULAR RINGDOWN MODEL

• Similar results hold for QNM amplitudes:

Currently, all eccentric IMR models assume circularisation before merger

Carullo, 2406.19442

18

LATE-TIME TAILS

• For highly eccentric systems, tails might play an important role as well!

De Amicis, Wed 17:00, Amaldi

Albanesi, Fri 09:50, Amaldi

Albanesi+, 2305.19336 Carullo-De Amicis, 2310.12968 Cardoso+, De Amicis-Albanesi-Carullo, 2406.17018 Islam+, 2407.04682

• To overcome these issues, need to take into account: **nonlinear effects**

- To overcome these issues, need to take into account: **nonlinear effects**
 - Dynamical background
 - Mode coupling
 - Amplitude growth

- To overcome these issues, need to take into account: **nonlinear effects**
 - Dynamical background

• To overcome these issues, need to take into account: **nonlinear effects**

• Dynamical background

Mode-spreading, frequency drift, ...

Sberna+, 2112.11168 (AdS) Redondo-Pereniguez+, 2312.04633, Capuano+, 2407.06009 (Vaidya) Zhu+, 2404.12424 (Kerr)

• To overcome these issues, need to take into account: **nonlinear effects**

• Dynamical background

Mode-spreading, frequency drift, ...

Sberna+, 2112.11168 (AdS) Redondo-Pereniguez+, 2312.04633, Capuano+, 2407.06009 (Vaidya) Zhu+, 2404.12424 (Kerr)

Mode-spreading, frequency drift, ...

Cannot reproduce frequency increase with $\omega_{\ell mn}(M(t), a(t))$ (both using ADM and horizon quantities) 20

• To overcome these issues, need to take into account: **nonlinear effects**

$(\ell, m) \times (\ell', m') \rightarrow (\ell'', m + m')$

Nonlinear dynamics

• To overcome these issues, need to take into account: **nonlinear effects**

• Mode coupling

Gleiser, Nicasio, Price, Pullin, Ioka, Nakano, Brizuela, Martin-Garcia, Marugan ...

 $\mathcal{O}_s \mathcal{T}[h_{ab}^{(1)}] =$

uu -

Credits: Redondo-Yuste

 $(\ell, m) \times (\ell', m') \rightarrow (\ell'', m + m')$

 $g_{ab} = g_{ab}^{\text{Kerr}} + \epsilon h_{ab}^{(1)} + \epsilon^2 h_{ab}^{(2)}$ $\mathcal{O}_s \mathcal{T}[h_{ab}^{(2)}] = \mathcal{S}_s[h_{ab}^{(1)}, h_{ab}^{(1)}]$ au

Campanelli&Lousto (1998) Recent work by Loutrel+, Spiers+,...

• To overcome these issues, need to take into account: **nonlinear effects**

• Mode coupling

Gleiser, Nicasio, Price, Pullin, Ioka, Nakano, Brizuela, Martin-Garcia, Marugan ...

 $\mathcal{O}_s \mathcal{T}[h_{ab}^{(1)}] =$

uu -

Credits: Redondo-Yuste

 $(\ell, m) \times (\ell', m') \rightarrow (\ell'', m + m')$

 $g_{ab} = g_{ab}^{\text{Kerr}} + \epsilon h_{ab}^{(1)} + \epsilon^2 h_{ab}^{(2)}$ $\mathcal{O}_s \mathcal{T}[h_{ab}^{(2)}] = \mathcal{S}_s[h_{ab}^{(1)}, h_{ab}^{(1)}]$ au

Campanelli&Lousto (1998) Recent work by Loutrel+, Spiers+,...

• Most-studied coupling: $(2,2) \times (2,2) \rightarrow (4,4)$

$$\Psi_4^{\ell=4,m=4} = A_{440} e^{i\omega_{440}t+\phi_{440}} + A_{220 imes220} e^{i\omega_{220 imes220}t+\phi_{220 imes220}}$$

Fundamental mode

QQNM

$${\cal R} = rac{A_{220 imes 220}}{A_{220}^2}$$

• Most-studied coupling: $(2,2) \times (2,2)$

$$) \rightarrow (4,4)$$

$$\Psi_4^{\ell=4,m=4} = egin{matrix} A_{440}e^{i\omega_{440}t+\phi_{440}} + A_{220 imes 220}e^{i\omega_{220 imes 220}t+\phi_{220 imes 220}} & Fundamental mode & QQNM & GQNM & GQ$$

Comparable or larger than linear 440!

Kehagias+, 2301.09345 (Kerr/CFT correspondence) Universality?

$${\cal R} = rac{A_{220 imes 220}}{A_{220}^2}$$

Loutrel+, 2008.11770, Ripley+, 2010.00162 London+, 1404.3197, Cheung+, 2208.07374 Mitman+, 2208.07380, Khera+, 2306.11142 Cheung+, 2310.04489

- **Properties**:
 - Dependence on parity initial data Bourg+, 2405.10270
 - Significant dependence on the spin

- **Properties**:
 - Dependence on parity initial data
 - Significant dependence on the spin

- **Properties**:
 - Dependence on parity initial data Bourg+, 2405.10270
 - Significant dependence on the spin
- Analytical computations:

Bucciotti+, 2309.08501, 2405.06012, 2405.0601, • Schw: 2406.14611, Perrone+, 2308.15886

- **Properties**:
 - Dependence on parity initial data Bourg+, 2405.10270
 - Significant dependence on the spin
- Analytical computations:

- Bucciotti+, 2309.08501, 2405.06012, 2405.0601, • Schw: 2406.14611, Perrone+, 2308.15886
- Kerr: Ma, Yang, 2401.15516,

Well-captured by angular structure

Nonlinear couplings in (2,2) mode?

Third-order couplings or counter-rotating/radial modes, expect them to be suppressed:

 $(\ell, 0) \times (\ell'', 2) \rightarrow (\ell''', 2)$

Beyond coupling contributions

• • •

 $(2,2) \times (2,2) \to (4,4)$

• To overcome validity regime issues into account "nonlinear" effects

• Amplitude growth

• To overcome validity regime issues with QNM superpositions, need to take

• To overcome validity regime issues into account "nonlinear" effects

• Amplitude growth

QNM shifts, quantum-mech PT? (poster by Jacopo Lestingi)

Transient due to "initial data" (binary multipoles-driven)

• To overcome validity regime issues with QNM superpositions, need to take

Bohranian+, 1901.08516

OPEN PROBLEM!

- Many complications in current spectroscopy analyses derive from lack of **understanding of early ringdown**
- Need *physical* and *interpretable* model to move forward

OPEN PROBLEM!

- Many complications in current spectroscopy analyses derive from lack of **understanding of early ringdown**
- Need *physical* and *interpretable* model to move forward
- This is still an open issue: strong-field two-body problem *numerically solved*, but not yet *analytically understood*
 - Important for **next gen**. and to **extend** the model (environmental corrections, beyond GR, ...)
 - Unavoidably tied to "When does the ringdown start?"

Future detection prospects

A LOUD FUTURE

BACK TO THE FUTURE

• Future large SNR will present many complications:

BACK TO THE FUTURE

• Transitioning to **high-precision** measurements:

SNR=8

BACK TO THE FUTURE

• Transitioning to **high-precision** measurements:

SNR=8

q=3, $\chi_1 = \chi_2 = 0$ vanilla case

6 (2, 1, 6) (2, 2, 0)(2,0,0) (2, -1, 0)4 -2,0)(2, \bigstar \bigstar (3, 2, 0)(3, 3, 0)(3,1,0) (3, -1, 0) (3, 0, 0) $\tau(ms)$ (3, -2, 0)3 2 (2, 1, 1)(2, 2, 1)(2, 0, 1)(2, -1, 1)(2, -2, 1)* (3, 3, 1)(3, 2, 1)(3, 1, 1)(3, -1, 1)(3, 0, 1)(3, -2, 1)(3, -3, 1)0 150 200 300 350 250 400 450 f(Hz)

SNR=40

CONSTRUCTING THE HIGH-ACCURACY TOOLBOX

- Extend standard GW likelihood, strategy: Bayesian global fit
 - Marginalisation over theoretical uncertainties
 - **On-source** and **joint** noise-estimation
 - Inclusion of time-varying background $S_n(f;t)$
 - Excision of data gaps
 - Overlapping signals (confusion noise)
- High rates (SNR) will require highly efficient (accurate) models.

Janquart+, arXiv:2211.01304

CONCLUSIONS

- The analysis of **black hole ringdown** signals is far richer than initially expected, and a powerful tool to:
 - Test our current gravity paradigm
 - Investigate the **nature** of dark **compact objects**
 - Search for signs of **new physics**
 - ... infer **horizon** properties?

CONCLUSIONS AND PROSPECTS

Credits: Jani, Ghonge

BLACK HOLE "STRUCTURE"

• Rotating BHs acquire:

 $Q = -\kappa \chi^2 m^3$

BH: $\kappa = 1$ NS: $\kappa \in [2, 14]$ BS: $\kappa \in [10, 150]$

• Rotating BHs acquire:

$$\kappa_s = (\kappa_1 + \kappa_2)/2,$$

 $\kappa_a = (\kappa_1 - \kappa_2)/2.$

BH: $\kappa = 1$

- Rotating BHs acquire:
- Skewness due to correlations, population dominated by positive-spin binaries.

$$\kappa_s = (\kappa_1 + \kappa_2)/2,$$

 $\kappa_a = (\kappa_1 - \kappa_2)/2.$

BH: $\kappa = 1$

- Rotating BHs acquire:
- Skewness due to correlations, population dominated by positive-spin binaries.
- Lacks inclusion of: higher-modes, tidal polarizability, inspiral QNM low-f resonances, tidal-heating (more later) $\kappa_s = (\kappa_1 + \kappa_2)/2,$ $\kappa_a = (\kappa_1 - \kappa_2)/2.$

BH: $\kappa = 1$

Can we say something on horizon physics from ringdown?

SPACE SUPREMACY

Babak+, arXiv:1703.09722 Cardoso-Pani, arXiv:1904.05363

Datta+, arXiv:1910.07841 Maselli+, arXiv:1910.12893

• Will start to be meaningfully **measurable** only by **3G** or **LISA**.

Lai-Li, 180

)7.0	1840
H RIs	

• Will start to be meaningfully **measurable** only by **3G** or **LISA**.

- Will start to be meaningfully measurable only by **3G** or LISA.
- EOB: resummed \mathcal{F}^H (based on slowly-varying perturbations). Accuracy vs NR for comparable/ intermediate q? Chiaramello-Gamba, 2408.15322

- Will start to be meaningfully measurable only by **3G** or LISA.
- EOB: resummed \mathcal{F}^H (based on slowly-varying perturbations). Accuracy vs NR for comparable/ intermediate q? Chiaramello-Gamba, 2408.15322

• Eccentricity boost to this measurement?

Datta+, 2404.04013, Chiaramello-Gamba, 2408.15322

HORIZON FROM RINGDOWN

• Standard ringdown emission dominated by light-ring physics.

Ferrari, Kokkotas, Mashoon,

HORIZON FROM RINGDOWN

- Standard ringdown emission dominated by light-ring physics.
- Might probe the horizon through some "exotic" physics

Cardoso, Franzin, Pani, 1602.07309

Ferrari, Kokkotas, Mashoon,

What if there's no complete absorption here?

What if there's no complete absorption?

Cardoso, Franzin, Pani, 1602.07309

- Identical ringdown
- Cavity sets late-time response

- Exotic compact objects (ECOs) are **BHs mimickers** candidates
- Instead of simple ringdown produce echos: multiple reflections between potential barrier and wouldbe-horizon

Cardoso, Pani, LRR (2019) Maggio, 2211.16900

ECHOS OF ECOS

Credits: Rico Ka Lok Lo

- Exotic compact objects (ECOs) are **BHs mimickers** candidates
- Instead of simple ringdown produce echos: multiple reflections between potential barrier and wouldbe-horizon

Testa, Pani, 1806.04253, Maggio+, 1907.03091, ...

Mark+, 1706.06155, Ma+, 2203.03174 Xin, 2105.12313

Mayerson, 2010.09736

Cardoso, Pani, LRR (2019) Maggio, 2211.16900

ECHOS OF ECOS

Credits: Rico Ka Lok Lo

- Exotic compact objects (ECOs) are **BHs mimickers** candidates
- Instead of simple ringdown produce echos: multiple reflections between potential barrier and wouldbe-horizon

Testa, Pani, 1806.04253, Maggio+, 1907.03091, ... Mark+, 1706.06155, Ma+, 2203.03174 Xin, 2105.12313 Mayerson, 2010.09736

Cardoso, Pani, LRR (2019) Maggio, 2211.16900

Simplified picture, more complicated in full NR

Siemonsen 2404.14536

ECHOS OF ECOS

Credits: Rico Ka Lok Lo

Abedi, Afshordi et al.: 1612.00266, 1803.10454, 2301.00025

SEARCHES

Westerweck+,1712.09966, Nielsen+,1811.04904, Uchikata+, 2309.01894

LVK SEARCHES

Modelled

based on: Lo-Li-Weinstein+, 1811.07431 Abedi+, arXiv:1612.00266

GWTC-2 Testing GR, LVC, 2010.14529 GWTC-3 Testing GR, LVC, 2112.06861

Abedi, Afshordi et al.: 1612.00266, 1803.10454, 2301.00025

Westerweck+,1712.09966, Nielsen+,1811.04904, Uchikata+, 2309.01894

Modelled

based on: Lo-Li-Weinstein+, 1811.07431 Abedi+, arXiv:1612.00266

GWTC-2 Testing GR, LVC, 2010.14529 GWTC-3 Testing GR, LVC, 2112.06861

Abedi, Afshordi et al.: 1612.00266, 1803.10454, 2301.00025

Caveat: Simplified model and phenomenology.

Can have no echoes at all, or long-lived emission, see e.g. 2108.08823, 2306.11166

LVK SEARCHES

Modelled

based on: Lo-Li-Weinstein+, 1811.07431 Abedi+, arXiv:1612.00266

GWTC-2 Testing GR, LVC, 2010.14529 GWTC-3 Testing GR, LVC, 2112.06861

Abedi, Afshordi et al.: 1612.00266, 1803.10454, 2301.00025

Unmodelled

(BayesWave: Cornish-Littenberg 1410.3835) based on: Tsang+, 1804.04877, 1906.11168

Westerweck+,1712.09966, Nielsen+,1811.04904, Uchikata+, 2309.01894

LVK SEARCHES

Modelled

based on: Lo-Li-Weinstein+, 1811.07431 Abedi+, arXiv:1612.00266

GWTC-2 Testing GR, LVC, 2010.14529 GWTC-3 Testing GR, LVC, 2112.06861

Abedi, Afshordi et al.: 1612.00266, 1803.10454, 2301.00025

Unmodelled

(Coherent Wave Burst: Klimenko+, 0802.3232) based on: Miani+, 2302.12158

Instrumental artifacts

Westerweck+,1712.09966, Nielsen+,1811.04904, Uchikata+, 2309.01894

Beyond the Kerr spectrum

LOST IN TRANSLATION

• Implications of LVC results to specific alternative theories of gravity?

- Implications of LVC results to specific alternative theories of gravity?
- Large amount of possibilities and of effects to take into account (isospectrality breaking, modes induced by extra-fields dynamics...)

- Implications of LVC results to specific alternative theories of gravity?
- Large amount of possibilities and of effects to take into account (isospectrality breaking, modes induced by extra-fields dynamics...)
- Previous (global) parameterisation not very suited:
 - Event-dependent (requires hierarchical analysis)
 - No dependence on spin
 - No dependence on extra-couplings

THEORY-SEMIAGNOSTIC RESULTS

theories of gravity:

Add deviations at each given order.

THEORY-SEMIAGNOSTIC RESULTS

• **Consistent framework** for perturbative **constraints** valid on **specific modified**

Proportional to action coupling(s):

$$\gamma := \left(\frac{\ell c^2 \left(1+z\right)}{G M}\right)^p$$

Numerical constants predicted by new theory. Independent of specific signal.

Maselli+, PRD (2020)

• **p=0** (e.g. certain scalar-tensor or Lorentz-violating)

$$S_{\underline{\mathcal{K}}} = \frac{1}{16\pi G_{\underline{\mathcal{K}}}} \int \sqrt{-g} \left(R - M^{\alpha\beta}{}_{\mu\nu} \nabla_{\alpha} u^{\mu} \nabla_{\beta} u^{\nu} \right) d^4x$$

• **p=2** (e.g. **Kerr-Newman** or charged dark matter)

$$\mathcal{L} = \sqrt{-g} \left(\frac{R}{16\pi} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + 4\pi e j_{\rm em}^{\mu} A_{\mu} + 4\pi e_h j_h^{\mu} B_{\mu} + 4\pi \epsilon e j_h^{\mu} A_{\mu} \right)$$

• p=4 (e.g. Einstein-scalar-Gauss-Bonnet or dynamical Chern-Simons)

$$S \equiv \int \frac{m_{\rm pl}^2}{2} d^4 x \sqrt{-g} \left[R - \frac{1}{2} (\partial \vartheta)^2 + 2\alpha_{\rm GB} f(\vartheta) \mathcal{R}_{\rm GB} \right], \quad S \equiv \int d^4 x \sqrt{-g} \left(\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \vartheta)^2 - \frac{m_{\rm pl}}{8} \ell^2 \vartheta^* R \right)$$

$$\mathbf{p=6} \text{ (e.g. Effective Field Theories)}$$

$$\text{metries + short distance}$$

$$\text{eriments (assuming)}$$

$$S_{\rm eff} = \int d^4 x \sqrt{-g} 2M_{\rm pl}^2 \left(R - \frac{\tilde{\mathcal{C}}^2}{\Lambda^6} - \frac{\tilde{\mathcal{C}}\mathcal{C}}{\Lambda^6} \right)$$

$$\mathcal{C} \equiv R_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta}, \quad \tilde{\mathcal{C}} \equiv R_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta}, \quad \tilde{\mathcal{C}} \equiv R_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta},$$

• 1

Symm expe causality, locality, diff. inv., unitarity)

$$\frac{1}{2}(\partial\vartheta)^{2} + 2\alpha_{\rm GB}f(\vartheta)\mathcal{R}_{\rm GB}\Big], \quad S \equiv \int d^{4}x\sqrt{-g}\left(\frac{m_{\rm pl}^{2}}{2}R - \frac{1}{2}(\partial\vartheta)^{2} - \frac{m_{\rm pl}}{8}\ell^{2}\vartheta^{*}R\right)$$

Id Theories)

$$S_{\rm eff} = \int d^{4}x\sqrt{-g}2M_{\rm pl}^{2}\left(R - \frac{\mathcal{C}^{2}}{\Lambda^{6}} - \frac{\tilde{\mathcal{C}}^{2}}{\tilde{\Lambda}^{6}} - \frac{\tilde{\mathcal{C}}\mathcal{C}}{\tilde{\Lambda}^{6}}\right)$$

$$\mathcal{C} = R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}, \qquad \tilde{\mathcal{C}} = R_{\alpha\beta\gamma\delta}$$

Endlich+, arXiv:1704.01590

THEORY LANDSCAPE

Berti+, arXiv:1501.07274 Cardoso+, arXiv:1604.07845

THEORY-SEMIAGNOSTIC RESULTS

• Input mass-scaling from beyond-GR actions and **QNM spin-dependence**: improve constraints

Carullo, 2102.05939

Maselli+, 1910.12893

THEORY-DEPENDENT RESULTS

THEORY-DEPENDENT RESULTS

• Linear order corrections in QNM of EOB models:

$$S_{\rm EFT} = \frac{1}{16\pi} \int d^4 x \sqrt{-g} \left[R + \sum_{n \ge 2} \ell_{\rm EFT}^{2n-2} L^{(2n-2)} \right]$$

 $L^{(6)} = \lambda_{\rm e} R_{\mu\nu}{}^{\rho\sigma} R_{\rho\sigma}{}^{\gamma\delta} R_{\gamma\delta}{}^{\mu\nu} + \lambda_{\rm o} R_{\mu\nu}{}^{\rho\sigma} R_{\rho\sigma}{}^{\gamma\delta} \tilde{R}_{\gamma\delta}{}^{\mu\nu},$

Regularisation at high spins?

Franciolini+, Salcedo+, Pierini-Gualtieri, Srivastava+, Wagle+, Cano+, ...

Silva+, arXiv:2205.05132

THEORY-DEPENDENT RESULTS

- Predictions for arbitrary spins in **beyond-GR EFTs**
 - Refining it with theory-dependent predictions

$$S_{\rm eff} = \int d^4x \sqrt{-g} 2M_{\rm pl}^2 \left(R - \frac{\mathcal{C}^2}{\Lambda^6} - \frac{\tilde{\mathcal{C}}^2}{\tilde{\Lambda}^6} - \frac{\tilde{\mathcal{C}}\mathcal{C}}{\Lambda^6} \right)$$

 $\mathcal{C} \equiv R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}, \qquad \tilde{\mathcal{C}} \equiv R_{\alpha\beta\gamma\delta}\tilde{R}^{\alpha\beta\gamma\delta}$

Cano, Capuano, Franchini, Fransen, Hertog, Maenaut, Ruiperez, Volkel

1901.01315, 2005.03671, 2110.11378, 2304.02663, **2307.07431**, 2407.15947

Menaut, Carullo, Cano+ (forthcoming)

RECENT DEVELOPMENTS

for beyond-Kerr signatures:

Corman, Ripley, East, 2210.09235

Many other efforts: Okounkova+, 1911.02588, Silva+, 2012.10436, Ripley, 2207.13074, Corman+, 2405.15581-2405.18496

• The final aim is to use predictions from full numerical simulations to search

Cayuso, Figueras, Franca, Lehner, 2303.07246

RECENT DEVELOPMENTS

for beyond-Kerr signatures:

• Recent advancements in EsGB:

Chung, Yunes, 2406.11986

• Leading to first complete IMR EOB model

• The final aim is to use predictions from full numerical simulations to search

Julie, Pompili, Buonanno, 2406.13654

KERR-NEWMAN RINGDOWN

- - **neutralisation**, ...). Can it be observationally confirmed?

• Final state conjecture (*No-hair* theorems+): black hole solutions belong to the Kerr-Newman family, and are determined by mass, spin and charge

• Astrophysical charge expected to be negligible (polarised vacuum,

KERR-NEWMAN RINGDOWN

- - **neutralisation**, ...). Can it be observationally confirmed?
- Fundamental physics motivations:
 - Minicharged dark matter, magnetic charge (primordial magnetic monopoles)
 - Scalar-vector-tensor gravity, topologically induced charge
 - Valuable **test-bed** for **beyond-Kerr** effects.

• Final state conjecture (*No-hair* theorems+): black hole solutions belong to the Kerr-Newman family, and are determined by mass, spin and charge

• Astrophysical charge expected to be negligible (polarised vacuum,

Cardoso+, arXiv:1604.07845

- Long-standing problem (Einstein-Maxwell equations **non-separable**)
- Dias, Godazgar, Santos: Linear stability of Kerr-Newman up to 99.999% of extemality
- Modes connected to Schwarzschild dominate the spectrum

QNM SPECTRUM PREDICTIONS

Dias, Godazgar, Santos, arXiv:1501.04625

- Long-standing problem (Einstein-Maxwell equations **non-separable**)
- Dias, Godazgar, Santos: Linear stability of Kerr-Newman up to 99.999% of extemality
- Modes connected to Schwarzschild dominate the spectrum
- Performed extensive tabulation
- Built a corresponding GW template

Carullo+, Phys. Rev. D (2022)

QNM SPECTRUM PREDICTIONS

Dias, Godazgar, Santos, arXiv:1501.04625

KERR-NEWMAN CONSTRAINTS

- Apply to LIGO-Virgo detections
- **Strong** spin-charge correlation
- No direct measurement possible: posterior is equal to the prior for Q (conditioned on $\bar{q}^2 + a^2 < 1$)

KERR-NEWMAN OBSERVATIONAL CONSTRAINTS

- **Restrict mass-spin** around LIGO-Virgo values: "mimick" information from inspiral-merger
- Null test: maximum amount of charge compatible with current observations
- Best event (GW150914) gives: $\bar{q} < 0.33$

KERR-NEWMAN FUTURE CONSTRAINTS

- Can future observations from current detector network
 discriminate the presence of a charge?
- Simulate observations of KN signals with LIGO-Virgo at design sensitivity
- Need more info to break
 spin-charge correlations

Khalil+, arXiv:1809.03109 Gupta+, arXiv:2107.12111

KERR-NEWMAN TEMPLATE

- Next:
 - Compare against fully relativistic numerical simulations
 - Predict amplitudes
 - Search for additional modes
 - Combine with inspiral model

Bozzola, Paschalidis, arXiv:2006.15764

De Amicis, Bozzola, Cardoso, Carullo, - In prep.

KERR-NEWMAN TEMPLATE

• Beyond pure electric/magnetic charge: unlock a **much richer phenomenology**

Regions of negative energy states of an electric particle in the field of a rotating magnetic BH

Dyson, Pereñiguez - arXiv:2306.15751

