Could population III binary stars be the progenitors of massive stellar black hole binaries?

Author: Federico Angeloni federico.angeloni@roma1.infn.it Supervisor: prof. Raffaella Schneider raffaella.schneider@uniroma1.it Co-Supervisor: dr. Luca Graziani luca.graziani@uniroma1.it

1St TEONGRAV international workshop on the Theory of Gravitational Waves Department of Physics, Sapienza University, Rome (Italy) 17 September 2024

Population III binary stars

• Stars born in metal-poor environments \rightarrow first galaxies ($z \gtrsim 13$);

Pop III Binary Stars

1St TEONGRAV international workshop

Population III binary stars

- Stars born in metal-poor environments \rightarrow first galaxies ($z \gtrsim 13$);
- Metallicity $Z_* \le 2 \times 10^{-6} \rightarrow f_{bin} \sim 0.8$ and massive BHs ($M_{BH} > 30 M_{\odot}$);

Population III binary stars

- Stars born in metal-poor environments \rightarrow first galaxies ($z \gtrsim 13$);
- Metallicity $Z_* \le 2 \times 10^{-6} \rightarrow f_{bin} \sim 0.8$ and massive BHs ($M_{BH} > 30 M_{\odot}$);
- Delay time $\geq Gyrs \rightarrow$ Merger redshift within $z \sim 1$.

international workshop

- O3 catalog ~ 90 BHBs;
- 60 % 03 events contains

 $M_1 > 30 M_{\odot};$

O3 Detections

1st TEONGRAV international workshop

- O3 catalog ~ 90 BHBs;
- 60 % 03 events contains $M_1 > 30 M_{\odot};$
- BHBs : $M_1 \le 50 M_{\odot}$; MBHBs : $M_1 > 50 M_{\odot}$;

O3 Detections

1st TEONGRAV international workshop

M₂ [M ₀]

- O3 catalog ~ 90 BHBs;
- 60 % 03 events contains $M_1 > 30 M_{\odot};$
- BHBs : $M_1 \le 50 M_{\odot}$; MBHBs : $M_1 > 50 M_{\odot}$;
- Possible formation path:

Isolated binaries

VS

Hierarchical BH mergers

O3 Detections

1st TEONGRAV international workshop

1st TEONGRAV international workshop

Binary population synthesis codes

- BPS codes study the time evolution of binary systems;
- Based on analytic formulas for binary and stellar physics;
- Statistical predictions of <u>large</u> binary population (e.g. 10⁷) in a reasonable amount of time (e.g. 48 h);

Binary population synthesis codes

- BPS codes study the time evolution of binary systems;
- Based on analytic formulas for binary and stellar physics;
- Statistical predictions of <u>large</u> binary population (e.g. 10⁷) in a reasonable amount of time (e.g. 48 h);

Binary population synthesis codes

- BPS codes study the time evolution of binary systems;
- Based on analytic formulas for binary and stellar physics;
- Statistical predictions of <u>large</u> binary population (e.g. 10⁷) in a reasonable amount of time (e.g. 48 h);

Different primary BH mass range on varying initial stellar metallicity;

1st TEONGRAV international workshop

- Different primary BH mass range on varying initial stellar metallicity;
- GW190426 and GW190521 out from the predictions of both BPS \rightarrow Not from isolated

binaries. Pagina 5/13

1st TEONGRAV international workshop

Model of galaxy formation: GAMESH

- Semi-numeric model: N-body + semi-analytic model for baryons;
- Simulated volume: 5³ cMpc³ (Local Group-like) with the Milky Way at centre and resolved mini-halos;
- Fast and flexible runs coupled with BPS still require HPC.

Galaxy Formation Models

1st TEONGRAV international workshop Pagina 6/13

Coupling GAMESH with BPS codes:

Coupling GAMESH with BPS codes:

Strong impact of galaxy evolution on the merging MBHBs detectable by LVK:

Less selected binary systems due to rapid metal-enrichment;

1St TEONGRAV international workshop

Coupling GAMESH with BPS codes:

Strong impact of galaxy evolution on the merging MBHBs detectable by LVK:

Less selected binary systems due to rapid metal-enrichment;

Detectable MBHBs still be present after the coupling with GAMESH!

```
BPS codes + GAMESH
predictions
```

1st TEONGRAV international workshop

	GAM	ESH+BSEE	MP	GAMESH+SEVN			
	Total	% coal.	% Pop III	Total	% coal.	% Pop III	
$M_1 \le 20 \; M_\odot$	$\sim 2.1 \times 10^3$	33%	10%	$\sim 1.8 \times 10^4$	7.4%	29%	
$20~M_{\odot} < M_1 \leq 35~M_{\odot}$	$\sim 3.1 \times 10^{3}$	26%	27%	$\sim 9.5 \times 10^3$	15%	78%	
$35~M_{\odot} < M_1 \le 50~M_{\odot}$	$\sim 4.5 \times 10^3$	17%	54%	$\sim 9.3 \times 10^3$	20%	97%	
$M_1 > 50 M_{\odot}$	$\sim 5.5 \times 10^3$	19%	100%	2	50%	100%	

Angeloni et al. in prep.

Angeloni et al. in prep.

Angeloni et al. in prep.

• Evident trend M_1 vs Z_{*}: BHBs ($35 M_{\odot} \leq M_1 \leq 50 M_{\odot}$) mainly formed by Pop III binaries;

1St TEONGRAV international workshop

Angeloni et al. in prep.

- Evident trend M_1 vs Z_* : BHBs ($35 M_{\odot} \le M_1 \le 50 M_{\odot}$) mainly formed by Pop III binaries;
- MBHBs ($M_1 \ge 50 M_{\odot}$) predicted only by BSEEMP.

Coalescing BHBs in GAMESH 1st TEONGRAV international workshop

	GAM	ESH+BSEE	MP	GAMESH+SEVN					
	Total	% coal.	% Pop III	Total	% coal.	% Pop III			
$M_1 \leq 20 \; M_\odot$	$\sim 2.1 \times 10^3$	33%	10%	$\sim 1.8 \times 10^4$	7.4%	29%			
$20~M_{\odot} < M_1 \leq 35~M_{\odot}$	$\sim 3.1 \times 10^{3}$	26%	27%	$\sim 9.5 \times 10^3$	15%	78%			
$35~M_{\odot} < M_1 \le 50~M_{\odot}$	$\sim 4.5 \times 10^3$	17%	54%	$\sim 9.3 \times 10^3$	20%	97%			
$M_1 > 50 \; M_\odot$	$\sim 5.5 \times 10^3$	19%	100%	2 50% 100%					

		GAMESH	+BSEEMP		GAMESH+SEVN			
	Pop III			Pop II	Pop III			Pop II
	$2 * 10^{-10}$ $2 * 10^{-8}$ $2 * 10^{-6}$		$\geq 2 * 10^{-5}$	10^{-11}	10^{-6}	$2 * 10^{-6}$	$\geq 2 * 10^{-5}$	
$M_1 \le 20 \ M_{\odot}$	0	0.4%	7.0%	92.6%	0.1%	1.9%	26%	72%
$20~M_{\odot} < M_1 \le 35~M_{\odot}$	0.7%	1.3%	21%	77%	2.9	4.1%	68%	25%
$35~M_{\odot} < M_1 \le 50~M_{\odot}$	1.4%	5.5%	67%	26.1%	1.9%	4.3%	90%	3.8%
$M_1 > 50 \ M_{\odot}$	1.7%	6.3%	75%	17%	0%	0%	100%	0%

1st TEONGRAV international workshop

		GAM	ESH+BSEE	MP	GAMESH+SEVN			
		Total	% coal.	% Pop III	Total	% coal.	% Pop III	
М	$_{1} \leq 20 \ M_{\odot}$	$\sim 2.1 \times 10^3$	33%	10%	$\sim 1.8 \times 10^4$	7.4%	29%	
$20 \ M_{\odot}$	$< M_1 \le 35 \; M_\odot$	$\sim 3.1 \times 10^3$	26%	27%	$\sim 9.5 \times 10^3$	15%	78%	
35 M_{\odot}	$< M_1 \le 50 \; M_\odot$	$\sim 4.5 \times 10^3$	17%	54%	$\sim 9.3 \times 10^3$	20%	97%	
M	$_1 > 50 \text{ M}_{\odot}$	$\sim 5.5 \times 10^3$	19%	100%	2	50%	100%	
		GAMESH	I+BSEEMF			GAMI	ESH+SEVN	
		Pop III		Pop I	I	Pop III		

 $> 2 * 10^{-5}$

92.6%

77%

26.1%

17%

BHBs $(M_1 >$	$-35 M_{\odot}$	predominantly	v formed b	v metallicity	$VZ_{+} \sim$	2×10^{-6} :
		Predominanci		Jinecumence	~ *	- · · · · ,

 $2 * 10^{-6}$

7.0%

21%

67%

75%

Coalescing BHBs in GAMESH

 $M_1 \leq 20 M_{\odot}$

 $20 \ M_{\odot} < M_1 \le 35 \ M_{\odot}$

 $35 M_{\odot} < M_1 \le 50 M_{\odot}$

 $M_1 > 50 M_{\odot}$

 $2 * 10^{-10}$

0

0.7%

1.4%

1.7%

 $2 * 10^{-8}$

0.4%

1.3%

5.5%

6.3%

1St TEONGRAV international workshop

 10^{-11}

0.1%

2.9

1.9%

0%

 10^{-6}

1.9%

4.1%

4.3%

0%

 $2 * 10^{-6}$

26%

68%

90%

100%

 $\geq 2 * 10^{-5}$

72%

25%

3.8%

0%

	GAM	ESH+BSEE	MP	GAMESH+SEVN				
	Total	% coal.	% Pop III	Total	% coal.	% Pop III		
$M_1 \leq 20 \; M_\odot$	$\sim 2.1 \times 10^3$	33%	10%	$\sim 1.8 \times 10^4$	7.4%	29%		
$20~M_{\odot} < M_1 \leq 35~M_{\odot}$	$\sim 3.1 \times 10^3$	26%	27%	$\sim 9.5 \times 10^3$	15%	78%		
$35~M_{\odot} < M_1 \leq 50~M_{\odot}$	$\sim 4.5 \times 10^3$	17%	54%	$\sim 9.3 \times 10^3$	20%	97%		
$M_1 > 50 \; M_\odot$	$\sim 5.5 \times 10^3$	19%	100%	2	50%	100%		
$\frac{20 \text{ M}_{\odot} < \text{M}_{1} \le 50 \text{ M}_{\odot}}{35 \text{ M}_{\odot} < \text{M}_{1} \le 50 \text{ M}_{\odot}}$ $\frac{M_{1} > 50 \text{ M}_{\odot}}{M_{1} > 50 \text{ M}_{\odot}}$	$\sim 3.1 \times 10^{3}$ $\sim 4.5 \times 10^{3}$ $\sim 5.5 \times 10^{3}$	20% 17% 19%	54% 100%	$\sim 9.3 \times 10^{3}$ $\sim 9.3 \times 10^{3}$	20% 50%	97% 100%		

	GAMESH+BSEEMP					GAMESH+SEVN			
	Pop III			Pop II	Pop III			Pop II	
	$2 * 10^{-10}$ $2 * 10^{-8}$ $2 * 10^{-6}$		$\geq 2 * 10^{-5}$	10 ⁻¹¹	10^{-6}	$2 * 10^{-6}$	$\geq 2 * 10^{-5}$		
$M_1 \le 20 \ M_{\odot}$	0	0.4%	7.0%	92.6%	0.1%	1.9%	26%	72%	
$20~M_\odot < M_1 \le 35~M_\odot$	0.7%	1.3%	21%	77%	2.9	4.1%	68%	25%	
$35~M_\odot < M_1 \le 50~M_\odot$	1.4%	5.5%	67%	26.1%	1.9%	4.3%	90%	3.8%	
$M_1 > 50 \ M_{\odot}$	1.7%	6.3%	75%	17%	0%	0%	100%	0%	

- BHBs ($M_1 > 35 M_{\odot}$) predominantly formed by metallicity $Z_{\star} \sim 2 \times 10^{-6}$;
- Star formation with $Z_{\star} < 2 \times 10^{-6}$ quenched rapidly by metal-enrichment.

Coalescing BHBs in GAMESH 1st TEONGRAV international workshop Pagina 9/13

Coalescing BHBs in GAMESH 1st TEONGRAV international workshop Pagina 9/13

Contribution to O3 candidates: GW191127 & GW190602

international workshop

Contribution to O3 candidates: GW191127 & GW190602

 Strong observative constraints on BH masses and merger time → candidates still be present within error bars!

Contribution to O3 candidates: GW191127 & GW190602

- Strong observative constraints on BH masses and merger time → candidates still be present within error bars!
- Predictions for O4: hundreds of new GW events detectable by LVK!

O3 data interpretation

1st TEONGRAV international workshop

Conclusions

- 1) GW190426 and GW190521 certanly not from isolated binaries;
- 2) More than 50% of massive GW events with $35 M_{\odot} < M_1 \le 50 M_{\odot}$ from Pop III stars according to both BPS;
- 3) More than 65% of BHBs with $M_1 > 35 M_{\odot}$ formed at metallicity $Z_{\star} \sim 10^{-6}$;
- 4) Hundreds of new detectable GW events predicted by our coupling simulations → our large statistics ready to interpret O4

Next steps and future prospectives

- 1) Characterize the BHB birth and coalescence sites with all populations: BH-BH, NS-NS and BH-NS;
- 2) Predictions for the future interferometers ET, CE and LISA;
- 3) Cosmological prediction of merger and birth rate density of all populations by the coupling with the cosmological fully hydrodynamic zoom-in simulation dustyGadget (Graziani et al. MNRAS, 2020);
- 4) Impact of dynamical formation channel on the O₃ events.

Redshift evolution BHB formation rate from Pop III and II binary stars

SEVN:

- Angeloni et al. in prep.
- Almost the same BH mass range from Pop III and II stars;
- Probability function distribution completely different.

AASS PhD Workshop

Merger Time Distribution

Pagina 36

Pagina 37

Models of galaxy formation to predict birth and merger sites of BHBs

GAMIESH

Simulated volume: 5 cMpc

- Semi-numeric model: N-body + semi-analytic model for baryons;
- More Flexible;

PhD - BOM

Fast simulation runs.

dustyGadget Simulated volume: 50 cMpc

- Fully hydrodynamic simulation: N-body + gas hydrodynamics;
- More accurate;
- More computationally expensive → HPC facilities.

Galaxy Formation Models

AASS PhD Workshop

Pagina 38