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Theoretical models

GW signals are generally analyzed using different theoretical predictions, e.g.:

✧ NR surrogates;

✧ phenomenological approximants;

✧ EOB-based models.

I will focus on the latter, which are based on
the effective-one-body (EOB) approach, first
introduced by Buonanno and Damour [1, 2].

Both phenomenological and EOB models bring together analytical and
numerical GR solutions.
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Perturbation series

In order to solve Einstein’s equations analytically, we need to make use of
approximations, such as:

✧ Post-Newtonian (PN), assuming small velocities, v
c
≪ 1;

✧ Post-Minkowskian (PM), assuming weak fields, GM
rc2

≪ 1;

✧ Gravitational Self-Force (GSF), assuming large mass ratios, m2
m1

≪ 1;

and others . . .

credit: Khalil et al. [3]
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Post-Minkowskian

The PM approximation [4, 5, 6], which only
assumes weak fields [GM/(rc2) ≪ 1] and allows
for arbitrary large velocities, is particularly
suitable for describing scattering systems.

It hopefully could help improving GW models for
eccentric and hyperbolic binaries signals.
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Recent advances

PM results have been computed through various
approaches, such as: scattering amplitudes;
eikonalization; effective field theory; and worldline
(classical or quantum) field theory.

For black hole (BH) binaries, 4PM-accurate
results are available, both for conservative [7,
8] and radiation-reacted dynamics [6, 9, 10],
including spin-orbit terms [11, 12].
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Energy comparison

First attempts to use PM results to build EOB-based models for bound orbits
were a little disappointing (see, e.g. [13, 3]).
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Scattering angle comparison

The comparison against NR
simulations of nonspinning BBH
scattering [14] again showed
poor agreement [15, 3].
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The PM-expansion of scattering angles

χnPM(γ, j) ≡
n∑

i=1

2
χi(γ)

ji
= 2

χ1 (γ)

j
+ 2

χ2 (γ)

j2
+ . . .

holds for large angular momenta but loses accuracy in strong-field systems.
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EOB resummation

We first proposed a resummation of the PM scattering angles [15], making
use of an EOB gravitational potential of the form:

wnPM(r̄, γ) ≡
n∑

i=1

wi(γ)

r̄i
=

w1(γ)

r̄
+

w2(γ)

r̄2
+ . . .

This reformulation greatly improves the agreement with numerical data (see
also [16, 17, 18]):
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Spinning simulations
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We performed equal-mass, nonspinning
simulations [16] at higher energies
using the Einstein Toolkit [19].

We also computed scattering angles for
equal-mass unequal-spin BBHs [16].
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Extension to spin

We could extend the EOB potential to take into account (aligned) spin effects:

wnPM(r̄, γ, ℓ, Si) = worb(r̄, γ) +
ℓwS

nPM(r̄, γ)

r̄2
+

wS2

nPM(r̄, γ)

r̄2

+
ℓwS3

nPM(r̄, γ)

r̄4
+

wS4

nPM(r̄, γ)

r̄4
.
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The 4PM EOB-resummed angles
are in excellent agreement with nu-
merical data (see also [17]).
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Waveforms

Leading-order PM waveform computed long
ago by Kovacs and Thorne [20].
One-loop computations O

(
G3

)
completed

recently [21, 22], but not yet in a form useful
for GW modelers.

There are also issues in extracting
gravitational waveforms and fluxes from
numerical simulations [30].
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EOB-PM Hamiltonian: issue #1

It is possible to extract information about closed orbits from PM results [4, 23],
generally by informing a (local) Hamiltonian [13, 3, 24].

While PN terms greatly simplify in
the EOB frame [25, 26], PM ones
keep their convoluted dependence
on the effective energy (γ).

gµνpµpν = −γ2

A
+

p2r
B

+
j2u2

C
.

Hamiltonian potentials up to 4PN Hamiltonian contribution at 4PM
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EOB-PM Hamiltonian: issue #2

PM computations inherently contain open-orbit hereditary contributions.

A satisfactory 4PM-accurate splitting between local and nonlocal-in-time terms
has not yet been obtained [27, 28].

Bini and Damour [28] have obtained the last 4PM term in the local action up to
order p30∞.
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A possible EOB-PM Hamiltonian

Buonanno et al. [24] proposed an EOB-PM model for bound orbits:

✧ the spinning Hamiltonian is obtained by iteratively expressing γ as a
function of phase-space variables (γ → ĤSchw + Ĥ2PM + . . . );

✧ problematic factors in nonlocal terms are substituted by well-defined
quantities [log(γ2 − 1) → log(u), . . . ];

✧ the nonspinning Hamiltonian is completed by 4PN terms, both local and
nonlocal (for bound orbits);

✧ the waveform is calibrated to NR simulations.
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A new approach to EOB

In an upcoming paper, Damour et al. [29] will propose a new way of solving the
EOB equations of motions.

Instead of solving the usual Hamilton’s equations

S[xµ, pµ] =

∫ [
pi

dxi

teff
− Ĥeff(x

i, pi)

]
dteff −→


dxi

dt
=
∂Ĥeff

∂pi

dpi
dt

=− ∂Ĥeff

∂xi
+Fi

one can introduce a Lagrange multiplier eL and a constraint C such that

S[xµ, pµ, eL] =

∫ [
pµ

dxµ

dτ
− eL C (xµ, pµ)

]
dτ −→


dxµ

dτ
= eL

∂C
∂pµ

dpµ
dτ

= −eL
∂C
∂xµ

+Fµ

C = 0
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Pro and cons

We can then avoid to invert the mass-shell condition (to determine
Ĥeff = γ) at the cost of solving one additional differential equation
(dγ/dteff).

In general, the EOB mass-shell constraint will look like

C = gµνpµpν + 1 +Q = −γ2

A
+

p2r
B

+
p2φu

2

C
+ 1 +Q = 0.

(Schwarzschild is recovered for A = B−1 = 1− 2u, C = 1, Q = 0)

If we can explicitly solve the constraint for Ĥeff (e.g., the EOB potentials do
not depend on γ), these new Euler-Lagrange equations are equivalent to
Hamilton’s equations.

Naturally, PM-informed EOB potential depend in a complicated manner on γ
and this approach simplifies computations.
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Our choices

We decided to choice a gauge close to the Schwarzschild case, i.e.

A(γ) = B(γ)−1, C = 1, Q = 0.

Our constraint will be, including spin-orbit interaction:

C = − [γ − pφG(γ)S]2

A(γ)
+A(γ)p2r + p2φu

2 + 1 = 0.

We define A as
A4PN

4PM = Alocal
∼4PM +∆A4PN ,

and

✧ Alocal
∼4PM is determined by matching the 4PM local scattering angle

prediction using the almost complete χlocal
∼4PM [28];

✧ ∆A4PN is obtained by imposing the complete bound-orbit 4PN
behavior.
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Results [preliminary]
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With no NR calibration (up to merger), we are able
to reach a reasonable agreement with SXS waveforms
(mismatches ∼ 10−2 → see Andrea’s talk).

The agreement improves increasing the mass-ratio.

We are working on the inclusion of 8.5PN, 1GSF-
accurate terms in the Hamiltonian to assess if we can
improve further.
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Results [preliminary]

Adding a free 5PM-5PN parameter and fitting it
we are able to reach a mismatch of 10−4/10−3

against all quasi-circular nonspinning SXS
waveforms.
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[Spinning waveforms almost ready].
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Conclusions

✧ High-order PM results, once recasted in a particular EOB form,
show excellent agreement with NR scattering simulations.

✧ The first EOB-PM models applied to noncircular (nonprecessing)
bound orbits are under construction.

However, some things are still missing:

1 more analytical information, be it PM, PN or GSF, could help to
build a fully analytical model;

2 a PM-based description of the radiative sector is not yet usable;
3 additional NR simulations (and waveforms) are necessary to

validate our models throughout the parameter space.
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Critical angular momentum

We first introduced [15] a resummation of the PM scattering angles that takes
into account the j-singularity due to the boundary between scattering and
plunge, such that

χL
nPM(γ, j) = L

(
j0
j

)
χ̂nPM(γ, j; j0) ,

with

L (x) ≡ 1

x
ln

[
1

1− x

]
, and jnPM

0 (γ) ≡
[
n
χn(γ)

χ1(γ)

] 1
n−1

.
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This procedure already improves the PM-
NR agreement.
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Critical j0 predictions

We can compare analytical and numerical predictions for the critical angular
momentum J0, J0

E2
=

ν j0
1 + 2ν (γ − 1)

, (1)

determining the boundary between scattering and plunge.

We were able to extend the parameter-
space covered by nonspinning numeri-
cal simulations.
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Comparison to EOB-NR models

This agreement is outstanding even
when compared to PN-based EOB-NR
models such as TEOBResumS.
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Inversion formula

The formula linking the EOB potential and the respective scattering angles is:

π + χ (γ, j) = 2 j

∫ ūmax(γ,j)

0

dū√
p2∞ + w(ū, γ)− j2ū2

, with ū ≡ 1

r̄
.

This means we can extract information about the underlying gravitational
potential if we know the scattering angles. In particular, we make use of
Firsov’s inversion formula:

ln

[
1 +

w(ū, p∞)

p2∞

]
=

2

π

∫ ∞

r̄|p(r̄,γ)|
dj

χ(γ, j)√
j2 − r̄2 p2(r̄, γ)

,
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NR potential

It is then possible to invert the proce-
dure and use the sequence of (constant-
energy) scattering angles to obtain an
NR gravitational potential.
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High E results
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