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Scientific case

* Core-Collapse Supernova (CCSN) features:
» Type ll SNe exceeding the Chandrasekhar
limit (1.4 M) of their iron core
» Massive stars (M ~ 8 — 100 M) with a rate e SCam A SR e )
of ~ 1 — 3 per century B LG S
> Veryweak GW signal of ~ 10721 — 10723 '
* Multi-messenger sources producing both
neutrinos and gravitational waves (along with an
electromagnetic counterpart, as in the SN 1987A)
« CCSN waveforms difficult to construct:
» Stochastic nature of the collapse due to non-
radial instabilities
» Lack of templates implying a detection
efficiency of 50% at 10 kpc
» Exclusion of modes different from the
dominant and limited set of simulations used

i . (1

SN 1987A (from apod.nasa.gov)
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https://apod.nasa.gov/apod/archivepix.html
https://apod.nasa.gov/apod/archivepix.html

Neutrino-driven explosions

* Amount of energy released in GWs (Eqgw ~

1047 erg) not sufficient to explain these explosions Onion-shell structure of pre-collapse star
* Neutrinos are good candidates to drive the H
supernova explosions:

> Cover the energies involved (E, ~ 10°3 erg)

» Hundreds of milliseconds after shock
stagnation core contraction and heating
causes the release of more powerful
neutrinos

» Low-mass progenitors (M ~ 8 — 10 M, with
O-Ne-Mg or iron cores) well explained by the
neutrino-driven mechanism

» Massive iron-core progenitors (M > 10 M) (ayers not drawn to scale)
might not be suited to this mechanism

Fe
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Gravitational instability

1. Collapse of stellar core: Rigiiser core
e +tp—-oVvet+ n |
e"+U,Z2)-v.+(4,Z-1) i~ ,
2. Core bounce and shock formation: ' Shock
» Stop of the implosion at nuclear density py = ‘ ~
2.7 x 10 g/cm3. Inner-core incompressibility |
(M ~ 0.5 M) creates a shock front
Shock stagnation and electron neutrino emission
4. Neutrino heating and accretion: »
» Reabsorption of v, and v, by free neutrons and
protons leads to convectively unstable layers |
(SASI, Rayleigh-Taylor plumes, ...)
5. Shock front revival and nucleosynthesis: | »
» Non-radial instabilities favor neutrino heating _ R
with radioactive nuclei production (e.g. *°Ni) ﬁ}/

6. Explosion and compact remnant with neutrino wind | 75 30 F R

.driven “wind”

»

@
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Rotating and non-rotating CCSNe

Rotating model
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Non-rotating model
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* The waveforms are generated with the ccphen code
written by Prof. Pablo Cerda-Duran
* Fundamental equation for time derivatives of the

quadrupole moment I}, (I = 2) integrated during
numerical analysis:

Wl (f)

Q1

e (Considered cases:

I, +

j;n.+_tugi(t)fan,:: Lbiﬂﬁ(t)

» Standard neutrino-driven supernovae with SASI.

suited to the most common cases (M >
10 M@); minimum GW emission setto 0.4 s

» Short neutrino-driven supernovae: adapted to
low-mass progenitors (M < 10 M); duration

limited to 0.1 — 0.4 s without SASI (takes longer
time to develop)
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* Two reference systems: co-rotating and laboratory
frames

* Assuming constant rotation rate ()

* Quadrupole moment in the laboratory frame:

. IS

"e e -

co . Cco 202 yecoy _—imSlt
Dy = (Iim — 2imSU), — m*§) Em)e

= Ae't, with A being a constant and o the

GW angular frequency, we have the so-called
rotational splitting:

17/09/2024
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Waveforms from rotating models
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Waveforms from rotating models with deformations

* GWsignal (I = 2, m) axisymmetric perturbation from rotation-induced deformations of
oscillation modes (I',m")

- Spherical PNS deformed to an oblate ellipsoid: displacement vector X = X" ()¢
decomposed in spherical harmonics, X" = Y.;2, X] (r)Y;0(6, ¢)

« Reference frame adapted to the star (', 8, ¢"), so to have isodensity surfaces at
constant r’

* Variation of the quadrupole moment from dominant mode contribution (I' = 2):

X; X3 Ry ,
P + 552m_ 2. / dr’ ’.-"'hl 5}92m With deformations
J0

,rf 400 ~

(SIZm — 612m,2m — (1 + 58{}m -

* Assuming constant ¢ and ellipticity e (between O and 1): -

. [167 (3 — %) — 31 — €2
X["]":\/Ecr’ Xy =— 5 ( 3+ ¢2 (1+c)r

Arms X 1023

Without deform
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Conclusions and future perspectives

 Core-Collapse Supernovae (CCSNe) are type Il supernovae with masses M ~ 8 —
100 M that have reached the Chandrasekhar limit of 1.4 M, of their iron core

* The most prominent scenario is the revival of the stalling shock by neutrino heating, the
so-called neutrino-driven mechanism: low-mass stars back up this mechanism, but
massive progenitors couldn’t be suited to this description

* Rotating CCSNe have a different gravitational wave (GW) emission as compared to non-
rotating models: rotational splitting according to the value of the angular frequency ()

* Proto-neutron star spherical shape alteration to an ellipsoidal one induced by rotation:
the GW signal is amplified in terms of the ellipticity

* As a future outlook, the parameters controlling the GW emission in presence of rotation-
induced perturbations could be related to the angular velocity

* Improvements of 3D simulations could sustain the neutrino-driven mechanism also for
massive progenitors
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