

Bayes factor from normalizing flows

Rahul Srinivasan, Marco Crisostomi, Roberto Trotta, Enrico Barausse, and Matteo Breschi

$$p(A|B) = \frac{p(B|A) \cdot p(A)}{p(B)}$$

 $p(A|B, C) = \frac{p(B|A, C)}{p(A|C)} p(A|C)$ $p(\mathbf{B}|\mathbf{C})$

$$p(\theta|\text{data}, M) = \frac{p(\text{data}|\theta, M) \cdot p(\theta|M)}{p(\text{data}|M)}$$

Likelihood . Prior

Posterior =

Evidence

Competing models

 $p(\theta | \text{data}, M_l) = \frac{p(\text{data} | \theta, M_l) \cdot p(\theta | M_l)}{p(\text{data} | M_l)}$

Does the data favour M_1 or M_2 ? And by how much?

$$p(\theta|\text{data}, M_2) = \frac{p(\text{data}|\theta, M_2) \cdot p(\theta|M_2)}{p(\text{data}|M_2)}$$

Competing models

The Bayes Factor By what factor does the data favour M_1 over M_2 ?

R

=

=

$$p(\text{data}|M_1)$$

$$p(\text{data}|M_2)$$

Evidence₁

Evidence₂

$$p(\theta | \text{data}, M_1) = \frac{p(\text{data} | \theta, M_1) \cdot p(\theta | M_1)}{p(\text{data} | M_1)}$$

$$p(\theta | \text{data}, M_2) = \frac{p(\text{data} | \theta, M_2) \cdot p(\theta | M_2)}{p(\text{data} | M_2)}$$

The Evidence

 $p(\theta | \text{data}, M) =$

Probability density i.e., normalized.

 $p(\text{data}|\theta, M) \cdot p(\theta|M)$

p(data|M)

The Evidence

$$p(\theta|\text{data},M) = \frac{p(\text{data}|\theta,M) \cdot p(\theta|M)}{p(\text{data}|M)}$$

$$p(\text{data}|M) = \int p(\text{data}|\theta, M) \cdot p(\theta|M) \, d\theta$$

Evidence = $\int Likelihood$. Prior $d\theta$

Computing this integral can be quite non-trivial, and often, intractable.

Nested sampling¹:

Evidence estimated by iteratively computing the likelihood.

- *Computationally intensive* likelihood *re*calculation.
- *Slow*, CPU calculations, not parallelizable with GPUs.
- *Scalability* issues for high dimensions
 - Ex: 150 dimensions are computationally prohibitive

Nested sampling¹:

Evidence estimated by iteratively computing the likelihood.

- *Computationally intensive* likelihood *re*calculation.
- *Slow*, CPU calculations, not parallelizable with GPUs.
- *Scalability* issues for high dimensions

Other techniques:

- 1. k-nearest neighbours², Laplace approx. *Less expressive*: fails for large non-gaussianity.
- 2. Normalizing flow-based nested³/Gaussianized bridge⁴ sampling *Requires likelihood re-calculation*

4. Jia, He; Seljak, Uroš, 2019 10.48550/arXiv.1912.06073

^{1.} John Skilling "Nested Sampling," 10.1063/1.1835238.

^{2.} A. Heavens, et al 2017 arXiv:1704.03472 [stat.CO]

^{3.} Nested sampling with normalizing flows for gravitational-wave inference, 10.1103/PhysRevD.103.103006

Nested sampling¹:

Evidence estimated by iteratively computing the likelihood.

Likelihood evaluation can be expensive. These are pre-computed for MCMC samples in parameter estimation pipelines. Why not use it?

Useful to have a <u>fast</u>, <u>scalable</u>, and <u>expressive</u> method that does not require extra likelihood evaluations.

- 1. k-nearest neighbours², Laplace approx. *Less expressive*: fails for large non-gaussianity.
- 2. Normalizing flow-based nested³/Gaussianized bridge⁴ sampling *Requires likelihood re-calculation*
 - 1. John Skilling "Nested Sampling," 10.1063/1.1835238.
 - 2. A. Heavens, et al 2017 arXiv:1704.03472 [stat.CO]

3. Nested sampling with normalizing flows for gravitational-wave inference, 10.1103/PhysRevD.103.103006

4. Jia, He; Seljak, Uroš, 2019 10.48550/arXiv.1912.06073

A normalizing flow

Flows solves for a bijective map b/ the *latent* Normal distribution and the *real* non-trivial distribution.

Known *latent* distribution

Target real distribution

A normalizing flow

Flows solves for a bijective map b/ the *latent* Normal distribution and the *real* non-trivial distribution.

A normalizing flow

Flows solves for a bijective map b/ the *latent* Normal distribution and the *real* non-trivial distribution.

Target distribution
$$p(\boldsymbol{x}) \mapsto q_{\boldsymbol{\phi}}(\boldsymbol{x})$$
 Flow prediction $= n(\mathbf{f}_{\boldsymbol{\phi}}^{-1}(\boldsymbol{x})) \left| \det \frac{\partial \mathbf{f}_{\boldsymbol{\phi}}^{-1}}{\partial \boldsymbol{x}}(\boldsymbol{x}) \right|$

Theory behind *floZ*

Evidence = normalization constant of likelihood x prior

Theory behind *floZ*

Evidence = normalization constant of likelihood x prior

Expected output:

Evidence distribution

Ideally a delta function

1. Normalizing flow loss:

floZ prediction

$$\mathcal{L}_{1}(\boldsymbol{\phi}) = - \operatorname{E}_{\mathrm{p}(\boldsymbol{x})} \left[\log(\mathrm{q}_{\boldsymbol{\phi}}(\boldsymbol{x})) \right]$$

Expectation over posterior samples

1. Normalizing flow loss:

 $\mathcal{L}_{1}(\boldsymbol{\phi}) = - \mathop{\mathrm{E}_{\mathrm{p}(\boldsymbol{x})}}_{\swarrow} \left[\log(\mathrm{q}_{\boldsymbol{\phi}}(\boldsymbol{x})) \right]$

Expectation over posterior samples

2. Reducing evidence estimation error:

 $\mathcal{L}_2(oldsymbol{\phi})\simeq \log \sigma_{\mathfrak{h}}$

Standard deviation of evidence estimation

1. Normalizing flow loss:

 $\mathcal{L}_1(\phi) = - \mathop{\mathrm{E}}_{\mathrm{p}(\boldsymbol{x})} \left[\log(\mathrm{q}_{\boldsymbol{\phi}}(\boldsymbol{x})) \right]$ Expectation over posterior samples 2. Reducing evidence estimation error:

$$\mathcal{L}_2(oldsymbol{\phi})\simeq \log \sigma_{\mathfrak{h}}$$

Standard deviation of evidence estimation

$$\mathcal{L}_{3a}(oldsymbol{\phi}) \;=\; |\log \mu^{'}_{\mathfrak{g}}|$$

1. Normalizing flow loss:

 $\mathcal{L}_1(\phi) = -\mathrm{E}_{\mathrm{p}(\boldsymbol{x})} \begin{bmatrix} \log(\mathrm{q}_{\boldsymbol{\phi}}(\boldsymbol{x})) \end{bmatrix}$ Expectation over posterior samples 2. Reducing evidence estimation error:

$$\mathcal{L}_2(oldsymbol{\phi})\simeq \log \sigma_{\mathfrak{h}}$$

Standard deviation of evidence estimation

3. Identity evidence ratio of all pairs of samples: Mean evidence ratio

$$\mathcal{L}_{3a}(oldsymbol{\phi}) \ = \ |\log \stackrel{f}{\mu_{\mathfrak{g}}}|$$

4. Reducing evidence ratio error:

$$\mathcal{L}_{3b}(\phi) = \log \sigma_{\mathfrak{g}}$$

Standard deviation of the ratio of evidence

1. Normalizing flow loss: $\mathcal{L}_1(\phi) = \begin{bmatrix} \mathcal{L}_1(\phi) \\ \mathcal{L}_1(\phi) \end{bmatrix}$ Expect floz prediction $\mathcal{I}_1(\phi) = \begin{bmatrix} \mathbb{I}_1 \\ \mathcal{I}_1(\phi) \end{bmatrix}$ 2. Reducing evidence estimation error:

 $\mathcal{L}_2(\phi)\simeq 1$ **L** viation of evidence estimation

'3b

3. Identity evidence ratio of all pairs of samples: *idence ratio*

$$\mathcal{L}_{3a}(\phi) : \mathbf{L}_{3a}$$

4. Reducing evidence ratio error:

 $\mathcal{L}_{3b}(oldsymbol{\phi})$ =

Standard deviation of the ratio of evidence

Implementation: Loss Scheduling

Solving the four losses simultaneously:

- 1) Weighted sum of losses.
- 2) Schedule the losses

Implementation: Loss Scheduling

Solving the four losses simultaneously:

1) Weighted sum of losses.

2) Schedule the losses

Implementation: Dealing with sharp boundaries

Implementation: Dealing with sharp boundaries

Alternatives?

Reweighting by fraction of outliers

Distributions for benchmarking

30

Benchmarking w/ StateOfTheArt

kNN: k-Nearest Neighbours NS: Nested Sampling

31

Benchmarking w/ StateOfTheArt 4 Distributions x {2,10,15} Dimensions

• Accurate:

floZ and NS are in good agreement. Outperforms *k*NN

• Scalable:

15d require no more than 10^5 samples.

• Rapid

15d results of *floZ* obtained in \sim 20min on an A100 GPU

High dimensional scalability

For the same number of samples (10^5) & model complexity.

* For complex distributions, we need a combination of more samples, longer training time, and deeper networks.

Bayes factor in favor of the presence of the higher 221 overtone in GW150914

VS

Fundamental Mode w/ Overtone

34

Bayes factor in favor of the presence of the higher 221 overtone in GW150914

Bayes factor in favor of the presence of the higher 221 overtone in GW150914

Bayes factor in favor of the presence of the higher 221 overtone in GW150914

floZ estimates is compatible with nested sampling within their 1σ uncertainties.

Applications: Pulsar Timing Array

Bayes factor in favor of the presence of Hellings-Downs relation in EPTA data

70 dimensional samples, with 1e5 samples.

floZ estimates is compatible with EPTA results within the 1σ uncertainties. Very non-gaussian distribution \rightarrow Need more samples (ongoing analysis)

Samples provided by the EPTA collaboration

Convergence Test

How do we know that the flow is correct?

