

Einstein Maxwell Scalar Black Hole Collisions and Gravitational Echoes

Robin Croft

September 16, 2024

Table of Contents1 History and Motivation

\blacktriangleright History and Motivation

- ▶ Mathematical formulation
- ▶ Numerical Relativity Formalism
- ▶ Numerical Relativity Example Simulation
- ▶ Looking Forward

- Einstein-Maxwell-Dilaton (EMD) theory originated as a low energy limit of string theory.
- EMD theory describes a spacetime with electromagnetism and a scalar field called a dilaton; the dilaton has a specific coupling to the electro-magnetic field tensor in the lagrangean.
- In a similar fashion to Kaluza-Klein (KK) theory the dilaton represents the size of a $curled\ up$ higher dimension.
- It provides black hole (BH) solutions with scalar hair as electromagnetic charge and spin.
- BH solutions found by G. W. Gibbons and C. M. Hull in 1982.

Motivation 1 History and Motivation

- Why do we care about EMD's (apart from string theory)?
- From a theoretical point of view they are an extension of General Relativity (GR) and can be used to gauge the nature of event horizons, singularity formation, black hole thermodynamics and more.
- They can be used to test strong gravity by simulating their gravitational wave (GW) signals and collision phenomonology.
- Current GW detectors are suited to binary inspirals of compact objects (i.e. EMD BH's).
- The number of theories deviating from GR that are well posed is limited; even if this exact theory is not viewed as correct it serves as a simple proxy for a large class of theories.

EMS Theory and Echoes 1 History and Motivation

- Einstein-Maxwell-Scalar (EMS) theory is a generalisation of EMD theory in which the dilaton coupling to electromagnetism is generic.
- This allows for a wider range of phenomenon to be investigated such as spontanious scalarisation and echoes.
- Echoes provide a *smoking gun* for a detector; for example they can imprint a periodic modulation on gravitational ringdown signals.
- Careful tuning of the dilaton coupling is required to support echoes. This often leads to near-critical solutions where the horizon shrinks to near zero and the mass approaches the theoretical limit.

Pictorial Demonstration of Echoes

1 History and Motivation

Table of Contents2 Mathematical formulation

▶ History and Motivation

\blacktriangleright Mathematical formulation

▶ Numerical Relativity Formalism

▶ Numerical Relativity Example Simulation

▶ Looking Forward

Lagrangean 2 Mathematical formulation

• The EMS lagrangean consist of a real scalar field and the electromagnetic field,

$$\mathcal{L} = \left(rac{R}{8\pi} - 2g^{\mu
u}
abla_{\mu} \phi
abla_{
u} \phi - e^{-2lpha\lambda(\phi)} F_{\mu
u} F^{\mu
u}
ight) \sqrt{-g}.$$
 (1)

- ϕ real scalar field.
- A_{μ} electromagnetic 4-vector.
- $F_{\mu\nu}$ electromagnetic field tensor, $:= \nabla_{\mu}A_{\nu} \nabla_{\nu}A_{\mu}$.
- α dilaton/scalar coupling constant.
- Both ϕ and $F_{\mu\nu}$ are minimally coupled to gravity through $\sqrt{-g}$.
- Coupling function $\exp(-2\alpha\lambda(\phi)) \sim 1 2\alpha\lambda(\phi) + \dots$ is between ϕ and $F_{\mu\nu}$.
- In the limit $\alpha = 0$ we have pure electromagnetism in curved space.

Field Equations 2 Mathematical formulation

- The Euler-Lagrange equation for $g^{\mu\nu}$ gives the Einstein equation,

$$R_{\mu
u} - rac{1}{2}Rg_{\mu
u} = rac{8\pi G}{c^4}T_{\mu
u},$$
 (2)

$$T_{\mu\nu} = 2\nabla_{\mu}\phi\nabla_{\nu}\phi - g_{\mu\nu}\nabla\phi \cdot \nabla\phi + 2e^{-2\alpha\lambda(\phi)}F_{\mu\rho}F_{\nu}^{\ \rho} - \frac{1}{2}g_{\mu\nu}e^{-2\alpha\lambda(\phi)}F^{2}.$$
 (3)

- The Euler-Lagrange equation for ϕ gives the Klein-Gordon equation,

$$g^{\mu
u}
abla_{\mu}
abla_{
u}\phi=-rac{1}{2}lpha\lambda'(\phi)e^{-2lpha\lambda(\phi)}F^{2}.$$
 (4)

• The Euler-Lagrange equation for A_{μ} gives the Maxwell equations,

$$\nabla_{\mu}\left(e^{-2\alpha\lambda(\phi)}F^{\mu\nu}\right) = 0. \tag{5}$$

The Einstein Maxwell Dilaton Solution

2 Mathematical formulation

• The EMD BH using the choice $\lambda(\phi) = \phi$ and has the ansatz,

$$egin{aligned} \mathrm{d}s^2 &= -f^2\mathrm{d}t^2 + rac{1}{f^2}\mathrm{d}r^2 +
ho^2\mathrm{d}\Omega^2, \ f^2 &= \left(1 - rac{r_+}{r}
ight) \left(1 - rac{r_-}{r}
ight)^{rac{1-lpha^2}{1+lpha^2}} & ext{and} &
ho^2 &= r^2\left(1 - rac{r_-}{r}
ight)^{rac{2lpha^2}{1+lpha^2}}, \ A_\mu &= \left(rac{Q}{r}, 0, 0, 0
ight) & ext{and} & F_{tr} &= -rac{Q}{r^2}, \ e^{2lpha \phi} &= \left(1 - rac{r_-}{r}
ight)^{rac{2lpha^2}{1+lpha^2}}. \end{aligned}$$

• More general choices of $\lambda(\phi)$ require numerical techniques to solve for black hole solutions.

Table of Contents3 Numerical Relativity Formalism

▶ History and Motivation

- ▶ Mathematical formulation
- \blacktriangleright Numerical Relativity Formalism
- ▶ Numerical Relativity Example Simulation
- ▶ Looking Forward

Spacetime Foliation / Initial Value Problem

3 Numerical Relativity Formalism

- Want initial data that covers an instance of time, t_0 .
- Credit to F. Corelli (Sapienza) for creating initial data.
- Need 3+1 adapted evolution equations to evolve data foreward in time.
- System of PDE's must be strongly hyperbolic / well posed.

The 3+1 Decomposition 3 Numerical Relativity Formalism

- To evolve the EMS system on a timelike hypersurface Σ we need to decompose our tensor fields into temporal and spatial components.
- The metric is decomposed in the Arnowitt-Deser-Misner (ADM) form,

$$g_{\mu
u}\mathrm{d}x^{\mu}\mathrm{d}x^{
u}=-N^{2}\mathrm{d}t^{2}+\gamma_{ij}\left(\mathrm{d}x^{i}+eta^{i}\mathrm{d}t
ight)\left(\mathrm{d}x^{j}+eta^{j}\mathrm{d}t
ight).$$
 (6)

- Define the future directed, timelike unit vector $n_{\mu} = -Ndt$ which is normal to Σ . Alternatively $n^{\mu} = N^{-1}\{1, -\beta^i\}$.
- The electromagnetic field is decomposed as,

$$F_{\mu\nu} = n_{\mu}E_{\nu} - n_{\nu}E_{\mu} + {}^{(3)}\epsilon_{\mu\nu\rho}B^{\rho}.$$
 (7)

• The scalar field ϕ does not need decomposing, but it is helpful to define the momemntum $\Pi = -n^{\mu}\partial_{\mu}\phi$.

Numerical Evolution Scheme

3 Numerical Relativity Formalism

- The code used is GRChombo, a modern fully adaptive mesh refinement (AMR) for numerical relativity (NR).
- GRChombo uses the CCZ4 formulation (BSSN + Z4 constraint damping) and the moving puncture gauge (MPG).
- Matter evolution equations for ϕ and $F_{\mu\nu}$ are given next.
- Comparing to the traditional Maxwell equations, we recover the evolution for E_i and B_i with two constraint equations.
- The constraints are promoted to evolution variables Λ and Ξ that are driven to $\Lambda \to 0$ and $\Xi \to 0$. Analogous to the traditional constraints $\nabla \cdot B = 0$ and $\nabla \cdot E = \rho$.

EMS Evolution Equations Summary

3 Numerical Relativity Formalism

$$\begin{split} \partial_t \phi &= \mathcal{L}_{\beta} \phi - N\Pi, \\ \partial_t \Pi &= \mathcal{L}_{\beta} \Pi - \gamma^{\mu\nu} (D_{\mu} \phi) \partial_{\nu} N + N \left[\mathcal{K}\Pi - \gamma^{\mu\nu} D_{\mu} D_{\nu} \phi - \alpha \lambda'(\phi) e^{-2\alpha\lambda(\phi)} (B^2 - E^2) \right], \\ \partial_t E_i &= \mathcal{L}_{\beta} E_i + N K E_i - 2N E^i K_{ij} + \epsilon_i^{\ jk} \left[B_k D_j N + N D_j B_k \right] + N D_i \Xi \\ &- 2\alpha \lambda'(\phi) N \left[\epsilon_i^{\ jk} B_k D_j \phi + \Pi E_i \right], \\ \partial_t B_j &= \mathcal{L}_{\beta} B_j + N K B_j - 2N B^i K_{ij} - \epsilon_j^{\ ik} \left[E_k D_i N + N D_i E_k \right] + N D_j \Lambda, \\ \partial_t \Xi &= \mathcal{L}_{\beta} \Xi + N \left[D_i \left(E^i e^{-2\alpha\lambda(\phi)} \right) - \kappa \Xi \right], \\ \partial_t \Lambda &= \mathcal{L}_{\beta} \Lambda + N \left[D_i B^i - \kappa_B \Lambda \right], \end{split}$$

15/24

Table of Contents 4 Numerical Relativity Example Simulation

▶ History and Motivation

- ▶ Mathematical formulation
- ▶ Numerical Relativity Formalism
- ▶ Numerical Relativity Example Simulation
- ▶ Looking Forward

Reissner Nordstrom Penrose Diagram

4 Numerical Relativity Example Simulation

Initial Data - Electromagnetic Field ($F_{\mu\nu}F^{\mu\nu}$)

4 Numerical Relativity Example Simulation

18/24

DB: Sim p 005450.3d.hdf5

Pre and Post Merger Plot - $F_{\mu\nu}F^{\mu\nu}$

4 Numerical Relativity Example Simulation

DB: Sim_p_007000.3d.hdf5 Cycle: 7000 Time:1750

Figure: Left: Pre-Merger, Right: Post-Ringdown

Pre and Post Merger Plot - ϕ

4 Numerical Relativity Example Simulation

Figure: Left: Pre-Merger, Right: Post-Ringdown

Gravitational Wave Signal

4 Numerical Relativity Example Simulation

Figure: Gravitational radiation: x-axis time, y-axis ψ_4 Weyl scalar.

Table of Contents5 Looking Forward

▶ History and Motivation

- \blacktriangleright Mathematical formulation
- ▶ Numerical Relativity Formalism
- ▶ Numerical Relativity Example Simulation
- ► Looking Forward

Outlook 5 Looking Forward

- Currently we can evolve EMS BH's and their collisions.
- Sadly the solutions with double peaked potentials we have found posses very small horizons and require extreme resolution to run if we want to see echoes. A potential workaround is to try find less extreme EMS BH's that also have a double peaked potential.
- Additionally I'm using a spherically symmetric evolution code for use with a perturbative approach credit to M. Melis (Sapienza) for supplying the perturbative equations of motion and numerical effective potentials.
- The perturbative code is working well as a useful probe to see scalar/axial (soon polar?) echoes in the linear (soon nonlinear?) regime to give an idea of what to expect in 3D collisions or perturbation simulations.

Einstein Maxwell Scalar Black Hole Collisions and Gravitational Echoes

Thanks for listening! Any questions?

Email : robin.g.croft@gmail.com : robin.croft@uniroma1.it