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Astrophysical motivations of my talk

** General Relativity (GR) can be tested via compact binary systems

** The non-linear structure of GR can be approximated via the post-Newtonian (PN) method

(\ PN sources
‘ (slowly moving, weakly self-gravitating, / / Iél:::l PN CORRECTIONS
‘ E and weakly stressed) :> NPN=c2"
+ Newtonian absolute
Euclidean space

BODIES WELL SEPARATED

LOST OF THE GR GENERAL COVARIANCE IN FAVOUR OF SPECIAL COORDINATE SYSTEMS (E.G., HARMONIC COORDINATES)

*¢* The PN method is extensively used to investigate the relativistic two-body dynamics for

precision tests of gravity theories and neutron star mass measurements in binary pulsars

** These assessments are based on the guasi-elljpptic 1PN-accurate GR motion of a two-body
system, being the analytical solution provided by Damour & Deruelle 1985 (DD85)



Aim of the talk

PREMISES: binary system’s motion in the center-of-mass frame with harmonic coordinates

R = two-body seperation
@ = polar angle

Use the analytical result of DD85 at 1PN order R(g@)

7

Provide the analytical expression at 1PN order t(gp) t = coordinate time

@ Why is it important?

Speed up the calculations for binary pulsars
implemented in TEMPO, TEMPOZ2, PINT

Reduce the computational costs for producing gravitational
waveforms in compact binary systems
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Initial data
dR :
R tin — Rina 3, tin — Rirn
(t) (1)
dep |GM
lin) = in» — (tin) = a9

Preliminaries

mi > Mma,
d’l"l

’U = —
1 dt )

M:m1+m27
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Model parameters

_dry
dt ’
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K= "1 >

R = Tl(t) — ’I"Q(t),

Conserved energy and angular momentum
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Analytical expression of the radius by DD85

R(p) = Ro(p) + C%R1(90) +0 (™)
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Numerical integration

From DD85, we have

H:J[1+(3V—1)§],

I=Q2v—4)

Integrating it numerically /
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INTEGRATING FUNCTION (*)

R2 1 2Rq J1
At = =931+ | Ey(1 — 9 )
Jo{ +62[ o(1—3v) + e Qo(v —2) ”dw

We obtain a monotonically increasing function,

as we would expect from the coordinate time



Analytical formula

Starting from (*), we must integrate D|V|d|ng~the |ntegra~t|ng funct|o~n in three ?arts We rewrite R, as
L o PTeTem 9(K@) = 91(K@) + 92(K @) + g3(K @) - L
= p)ap :: > :'I> B, + B Ko
t /g(Kg&)dgp 91(K @) = A1 Ry, A,,A,A; coefficients 1+ B cos(K )
_ ‘ o _ gQ(K ) = AQR(%, coefficients
1PN-expansion of the perihelion shift term ~ 5
g3( @) := Az cos(Kp)Ry. B >DBy,>0
Plotting the function (**) analytically integrating @
fle) = f1(p) + fale) + f3(p

fio) = [ ai(Bopp, i=1.23
B 24, arctan (\/g:i’f)
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" 2\¥ f( _2(0102)3/2 Cl 20102 (Cl + 02’7'2) ’
- Co
fato = Ma[ 3(CF — 03) arctan (/ &7) , TC1(3C2 4 5C3) + (502 + 3C3)Cor’
I 8(C1C2)5/2 8C2C2 (Cy + Cy12)?

C1=DB1+ By >0, .
0 10 20 30 40 50 60 02 — Bl o B2 2 0 T = tan(m/Q) T — Kgp
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The function (**) must be made
continuous, connecting smoothly
the different periodic branches

Accumulation function

—

This can be achieved through, what we

called, an accumulation function

We introduce a
characteristic period

o s

P,=—
© ~
K
accumulation function @
0, if ¢ € |0, P,],
Fn(@) c= e ’
2nf(P,), if ¢ € [Py(2n+1), Py(2n + 2)],
INTEGER PART
e n € N s calculated as follows ¢q = [(¢ — P,)/P,]

g is an even number

q is an odd number

0.0

final analytical formula
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Perfect agreement between numerical

integration and analytical formula
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t(o) = f(p) + Falp) + O (¢77)




Resumé of the results

« The formula t(¢@) at 1PN represents a new analytical result in the GR PN literature.

« The strength of our method relies upon two fundamental steps:
(1) computing integrals (symbolic program);
(2) making the solution (1) continuous via an accumulation function.

- The accumulation function, never proposed in the literature, is the original part of our work.

- We have proposed this analytical result at 1PN level, as the starting point.

 Our finding can be applied for timing the orbital period of compact binary systems
during the inspiral phase. Furthermore, it is also useful for extracting information from
binary systems, as well as for providing significant tests of gravity.



Conclusions

Our formula can be used to replace numerical schemes
in TEMPO and LIGO due to its simpler and faster
implementation with no approximation costs

ADAVANTAGES OF
OUR RESULT Our method can be generalized and extended to higher
PN orders, where an analytical formula (in whatever
form is presented) may improve speed and accuracy

We have presented the lowest PN order

LIMITS OF
OUR RESULT Pulsar timing recipes often make use of ((t), whose
calculation still requires a numerical inversion. However
our solution can speed up such computations
FUTURE |
b i aicia o Extending our method to the 2PN order
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