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Figure: Estimated strain of GW150914 (Abbott et al., 2016a).
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Outline

Perturbations in modified gravity can be extra complicated

Horndeski admits black holes with scalar hair set by the mass

Simplified formalism for perturbations in Horndeski

How feasible are future tests of GR with ringdown?
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Black hole ringdown

r → rH r → ∞

Figure: Boundary conditions on solutions to linearised Einstein equations.

δGµν [hµν ] = 0 (1)

hµν ∼ e−iωt (2)

Frequencies ω are complex: quasi-normal modes (QNMs)
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Figure 2: The spectrum of QNM for a Schwarzschild black-hole, for ℓ = 2
(diamonds) and ℓ = 3 (crosses) [25]. The 9th mode for ℓ = 2 and the 41st for
ℓ = 3 are “special”, i.e. the real part of the frequency is zero (s = iω).

For a mathematical proof refer to [39].
The perturbations of Reissner-Nordström black holes, due to the spherical

symmetry of the solution, follow the footsteps of the analysis that we have
presented in this section. Most of the work was done during the seventies by
Zerilli [213], Moncrief [153, 154] and later by Chandrasekhar and Xanthopou-
los [55, 209]. For an extensive discussion refer to [56]. We have again wave equa-
tions of the form (21), one for each parity with potentials which are like (23)
and (24) plus extra terms which relate to the charge of the black hole. An inter-
esting feature of the charged black holes is that any perturbation of the gravi-
tational (electromagnetic) field will also induce electromagnetic (gravitational)
perturbations. In other words, any perturbation of the Reissner-Nordström
spacetime will produce both electromagnetic and gravitational radiation. Again
it has been shown that the solutions for the odd parity oscillations can be de-
duced from the solutions for even parity oscillations and vice versa [55]. The
QNM frequencies of the Reissner-Nordström black hole have been calculated
by Gunter [108], Kokkotas, and Schutz [129], Leaver [137], Andersson [9], and
lately for the nearly extreme case by Andersson and Onozawa [26].
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Figure: Spectrum of QNM frequencies for Schwarzschild, for ℓ = 2
(diamonds) and ℓ = 3 (crosses) (Kokkotas and Schmidt, 1999).
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Black Hole Perturbation Theory in Modified Gravity

What is the background ḡµν?

Generically, the “nice” features of GR are not present

Figure: Status of QNM analyses in modified theories (Franchini and
Völkel, 2023).

Are there any possible simplifications?
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Shift-symmetric Horndeski

The action, with c = G = 1, is invariant under ϕ → ϕ+ constant

SH =
1

16π

5∑
i=2

∫
d4x

√
−gLi + SM (3)

X = −1

2
∇µϕ∇µϕ

L2 = K (X )

L3 = −G3(X )□ϕ

L4 = G4(X )R + G4X (X )
[
(□ϕ)2 −

(
∇µ∇νϕ

)2]
L5 = G5(X )Gµν∇µ∇νϕ

− G5X

6

[(
□ϕ)3 − 3□ϕ

(
∇µ∇νϕ

)2
+ 2

(
∇µ∇νϕ

)3]
(4)
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Classification of shift-symmetric Horndeski theories

GR black holes obey no hair theorems...

(Saravani and Sotiriou, 2019) established the relation

L = L̃+ αϕG , (5)

▶ L̃: theories admitting ϕ = 0 and hence all GR solutions

▶ L: theories admitting ϕ = 0 only for Minkowski

▶ G = RµναβRµναβ − 4RµνRµν + R2

ϕG term gives solutions with scalar hair (Sotiriou and Zhou, 2014)
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Just to drive it home...

L = L̃+ αϕG (6)

= + αϕG (7)
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Equations of motion & scalar charge

Gµν = Tϕ
µν (8)

∇µ(J̃
µ − αGµ) = 0 G = ∇µGµ (9)

Dimensionless scalar charge:

4πq ∝ α

M2
(10)
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Perturbative formalism

4πq ∝ α

M2
(11)

ϕ = qϕ(0,1) + εϕ(1,0) + q2ϕ(0,2) + εqϕ(1,1) (12)

gµν = ḡµν + εh(1,0) + q2h(0,2)µν + εqh(1,1)µν (13)

For large black holes, q is small: M ∼ 106M⊙ =⇒ q ≲ 10−13

Only linear order perturbations in ε
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Perturbed equations of motion

□ϕ(1,0) = 0 (14)

□ϕ(0,1) = −α(0,1)R̄µνρσR̄
µνρσ (15)

δGµν [h
(1,0)
µν ] = 0 (16)

δGµν [h
(1,1)
µν ] = α(0,1)κ

(
ϕ(1,0)

)
(17)
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Implications:

δGµν [h
(1,1)
µν ] = α(0,1)κ

(
ϕ(1,0)

)
(18)

The leading order corrections are suppressed by a factor of q

δG : GR operator! We are solving Kerr with a source

Source terms: contribution of αϕG only
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Implications for LISA

LISA is unlikely to detect scalar deviations from GR via

black hole ringdown analyses

The calculation of the QNMs is in progress!
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Linearised tensors

δGµν = δ

[
Rµν −

1

2
gµνR

]
=

(
g α
µ g β

ν − 1

2
gµνg

αβ

)
δRαβ , (19)

with the Lichnerowicz operator

δRµν [h] = −1

2

(
□̄hµν − 2hα(µ;ν)α + hαα;µν

)
(20)
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Figure: Potential V found by Regge-Wheeler (odd modes) (Regge and
Wheeler, 1957) and Zerilli (even) (Zerilli, 1970)
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Figure: WKB approximation for QNM frequencies.
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Figure: Teukolsky equation for Kerr perturbations (Teukolsky, 1973).

20



Figure: Separate ODEs from the Teukolsky equation.
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K̃ (X ) = X +O(X 2),

G̃3(X ) = τ3X +O(X 2),

G̃4(X ) = 1 + τ4X +O(X 2),

G̃5(X ) = τ5X +O(X 2) (21)
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L =
∑

k
f 4

µk Ok [
φ
ν ] where f , µ, ν are the corresponding mass scales

of the theory, φ describes the canonically normalised bosonic
degrees of freedom, and the operators Ok are assumed to contain
k derivatives and coefficients of order one.

f ∼ √
µν

L = µ2M2
PF

(
gαβ,

Rαβγδ

µ2 , ϕ, ∇αϕ
µ ,

∇α∇βϕ

µ2

)
where the scalar ϕ is

taken to be dimensionless and F admitting an expansion in
Rαβγδ

µ2 , ϕ, ∇αϕ
µ and

∇α∇βϕ

µ2 with order one coefficients.

Naturalness considerations now imply that α ∼ τ3 ∼ τ4 ∼ 1/µ2

and τ5 ∼ 1/µ4.

23



Naturalness considerations now imply that α ∼ τ3 ∼ τ4 ∼ 1/µ2

and τ5 ∼ 1/µ4.

We have constructed our expansion under the (small charge)
assumption α ∼ qM2. Assuming that the scale associated with α
is roughly the same as those associated with the τi , would imply
τ3 ∼ τ4 ∼ qM2 and τ5 ∼ q2M4. The absence of the scale
hierarchy is indeed what one expects from the naturalness
arguments we presented earlier, and it introduces a further
suppression of the τi contributions.
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FIG. 4. Top panel: 90% credible regions in the joint posterior distri-
butions for the mass M f and dimensionless spin a f of the final com-
pact object as determined from the inspiral (dark violet, dashed) and
post-inspiral (violet, dot-dashed) signals, and from a full inspiral–
merger–ringdown analysis (black). Bottom panel: Posterior distri-
butions for the parameters ∆M f /M f and ∆a f /a f that describe the
fractional difference in the estimates of the final mass and spin from
inspiral and post-inspiral signals. The contour shows the 90% con-
fidence region. The plus symbol indicates the expected GR value
(0, 0).

representation to have support between 20 and 132 Hz, and
∼ 16 if we truncate it to have support between 132 and 1,024
Hz. Finally, we compare these two estimates of the final M f

and dimensionless spin a f , and compare them also against
the estimate performed using full inspiral–merger–ringdown
waveforms. In all cases, we average the posteriors obtained
with the EOBNR and IMRPhenom waveform models, follow-
ing the procedure outlined in Ref. [3]. Technical details about
the implementation of this test can be found in Ref. [61].

This test is similar in spirit to the χ2 GW search statis-
tic [2, 62], which divides the model waveform into frequency
bands and checks that the SNR accumulates as expected

200 220 240 260 280 300

QNM frequency (Hz)

0

2

4

6

8

10

12

Q
N

M
de

ca
y

tim
e

(m
s)

1.0 ms

3.0 ms
5.0 ms

6.5 ms

IMR (l = 2,m = 2,n = 0)

FIG. 5. 90% credible regions in the joint posterior distributions for
the damped-sinusoid parameters f0 and τ (see main text), assuming
start times t0 = tM +1, 3, 5, 6.5 ms, where tM is the merger time of the
MAP waveform for GW150914. The black solid line shows the 90%
credible region for the frequency and decay time of the ` = 2, m = 2,
n = 0 (i.e., the least damped) QNM, as derived from the posterior
distributions of the remnant mass and spin parameters.

across those bands. Large matched-filter SNR values which
are accompanied by large χ2 statistic are very likely due ei-
ther to noise glitches, or to a mismatch between the signal
and the model matched-filter waveform. Conversely, reduced-
χ2 values near unity indicate that the data are consistent with
waveform plus the expected detector noise. Thus, large χ2

values are a warning that some parts of the waveform are fit
much worse than others, and thus the candidates may be due
to instrument glitches that are very loud, but do not resem-
ble binary-inspiral signals. However, χ2 tests are performed
by comparing the data with a single theoretical waveform,
while in this case we allow the inspiral and post-inspiral par-
tial waveforms to select different physical parameters. Thus,
this test should be sensitive to subtler deviations from the pre-
dictions of GR.

In Fig. 4 we summarize our findings. The top panel shows
the posterior distributions of M f and a f estimated from the in-
spiral and post-inspiral signals, and from the entire inspiral–
merger–ringdown waveform. The plot confirms the expected
behavior: the inspiral and post-inspiral 90% confidence re-
gions (defined by the isoprobability contours that enclose 90%
of the posterior) have a significant region of overlap. As a
sanity check (which strictly speaking is not part of the test
of GR that is being performed) we also produced the 90%
confidence region computed with the full inspiral-merger-
ringdown waveform; it lies comfortably within this overlap.
We have verified that these conclusions are not affected by the
specific formula [40, 60, 63] used to predict M f and a f , nor
by the choice of f end insp

GW within ±50 Hz.
To assess the significance of our findings more quantita-

tively, we define parameters ∆M f /M f and ∆a f /a f that de-
scribe the fractional difference between the two estimates of

Figure: Posterior distribution for deviations from the GR values (plus
sign) of the mass and spin of the remnant black hole from the analysis of
GW150914 (Abbott et al., 2016b). The solid line is the 90% contour.
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δGµν [h
(1,0)
µν ] = 0 (22)

δGµν [h
(0,2)
µν ] = −1

2
α(0,1)

[
ḡρµḡδν + ḡρν ḡδµ

]
· ∇̄σ

(
∇̄γϕ

(0,1)ϵληρσϵαβγδR̄ληαβ

)
+

1

2
∇̄µϕ

(0,1)∇̄νϕ
(0,1) − 1

4

(
∇̄αϕ

(0,1)
)2
ḡµν (23)

δGµν [h
(1,1)
µν ] = −1

2
α(0,1)

[
ḡρµḡδν + ḡρν ḡδµ

]
· ∇̄σ

(
∇̄γϕ

(1,0)ϵληρσϵαβγδR̄ληαβ

)
+ ∇̄(µϕ

(0,1)∇̄ν)ϕ
(1,0) − 1

2
∇̄αϕ

(0,1)∇̄αϕ(1,0)ḡµν (24)
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