Comparing gravitational waveform models for binary black hole mergers through a hypermodels approach

A. Puecher*, A. Samajdar, G. Ashton, C. Van Den Broeck, T. Dietrich

Phys.Rev.D 109 (2024) 2, 023019

TEONGrav workshop 19th September 2024

*anna.puecher@uni-potsdam.de

Introduction

Introduction

Waveform models:

different approximations to build waveform models for parameter estimation analyses can lead to differences and biases in the results

Introduction

Waveform models:

different approximations to build waveform models for parameter estimation analyses can lead to differences and biases in the results

Hypermodels

Introduced in Ashton&Dietrich, *Nature Astronomy*(2022)

Sample over the waveform model too, with a categorical parameter ω :

parameters space = $\{\vec{ heta}, \omega\}$ $\omega \in [0, m-1]$ source parameters waveform model

Hypermodels

Introduced in Ashton&Dietrich, Nature Astronomy(2022)

Sample over the waveform model too, with a categorical parameter ω :

parameters space = $\{\vec{\theta}, \omega\}$ $\omega \in [0, m-1]$ source parameters waveform model

Probability for each waveform ℓ :

$$p_\ell = rac{n_\ell}{N}$$

 $egin{aligned} n_\ell &
ightarrow & ext{number of samples} \ ext{for model } \ell \ N &
ightarrow & ext{total final posterior} \ ext{samples} \end{aligned}$

Odds ratio between two models A and B:

$$\mathcal{O}^A_B = rac{p_A}{p_B} = rac{n_A}{n_B}$$

Analysis

• Four different models, all with precession and higher-order modes: NRSur7dq4, IMRPhenomXPHM, SEOBNRv4PHM, IMRPhenomTPHM

$$(\ell,m)=(2,2),(2,1),(3,3),(4,4),(2,-2),(2,-1),(3,-3),(4,-4)$$

• Heaviest events in GWTC-3 ($M_{
m tot} \geq 59.4 M_{\odot}$, NRSur7dq4 validity)

with significant SNR ($ho_{
m net} \geq \sqrt{N_{
m d} * 8^2}$) -> 13 events

- bilby MCMC
- recover source parameters (chirp mass M_c , mass ratio q, effective inspiral spin χ_{eff} , effective precessing spin χ_p) and probabilities for the different models

Results - Single events

- For most events, no clearly favored model
- Only for 3 events we find a strong preference for some of the models

but -> not the same models are preferred -> short duration and data quality issues

Models' probability

 $p_\ell = rac{n_\ell}{N}$

Event	NRSur	SEOB	IMRX	IMRT
GW150914	27.55 ± 0.7	16.22 ± 0.8	23.34 ± 0.7	32.88 ± 0.7
GW190519_153544	20.82 ± 0.6	20.95 ± 0.6	40.87 ± 0.5	17.35 ± 0.6
GW190521_074359	14.76 ± 1.2	40.50 ± 1.0	17.53 ± 1.2	27.22 ± 1.1
GW190620_030421	32.98 ± 0.6	19.48 ± 0.6	20.22 ± 0.6	27.32 ± 0.6
GW190630_185205	33.79 ± 0.6	15.36 ± 0.6	18.90 ± 0.6	31.95 ± 0.6
GW190910_112807	22.86 ± 0.6	25.92 ± 0.6	27.85 ± 0.6	23.37 ± 0.6
GW191222_033537	28.11 ± 0.5	20.58 ± 0.6	18.78 ± 0.6	32.53 ± 0.5
$GW200112_155838$	30.56 ± 0.6	15.61 ± 0.6	19.82 ± 0.6	34.01 ± 0.5
GW200224_222234	21.82 ± 0.6	23.39 ± 0.6	40.43 ± 0.5	14.36 ± 0.7
GW200311_115853	15.68 ± 0.6	27.70 ± 0.6	35.69 ± 0.6	20.93 ± 0.6
GW190521	31.78 ± 0.6	26.39 ± 0.6	4.60 ± 0.7	37.23 ± 0.5
GW191109_010717	7.54 ± 1.6	62.29 ± 1.0	5.06 ± 1.7	25.11 ± 1.5
GW200129_065458	46.94 ± 1.4	$0.66^{+1.9}_{-0.66}$	51.14 ± 1.3	$1.25 \ ^{+1.9}_{-1.25}$

Results - Trends

No trends with respect to source parameters or SNR

Results - Combined events

		$\mathcal{O}_{ ext{SEOB}}^{ ext{NRSur}}$	$\mathcal{O}_{\mathrm{SEOB}}^{\mathrm{IMRX}}$	$\mathcal{O}_{ ext{seob}}^{ ext{IMRT}}$	$\mathcal{O}_{\mathrm{IMRX}}^{\mathrm{NRSur}}$	$\mathcal{O}_{\mathrm{IMRT}}^{\mathrm{NRSur}}$	$\mathcal{O}_{\mathrm{IMRT}}^{\mathrm{IMRX}}$
	All events	29.43 ± 1.11	4.70 ± 0.07	5.09 ± 0.08	6.26 ± 0.11	5.78 ± 0.10	0.92 ± 0.01
I	No GW200129_065458	0.42 ± 0.00	0.06 ± 0.00	2.69 ± 0.03	6.82 ± 0.12	0.15 ± 0.00	0.02 ± 0.00
	No GW190521	24.44 ± 0.84	26.99 ± 0.97	3.61 ± 0.05	0.91 ± 0.01	6.77 ± 0.12	7.48 ± 0.14
I	No GW191109_010717	243.31 ± 26.35	57.84 ± 3.05	12.62 ± 0.31	4.21 ± 0.06	19.27 ± 0.59	4.58 ± 0.07
	Without all three	2.85 ± 0.03	4.30 ± 0.06	4.74 ± 0.07	0.66 ± 0.00	0.60 ± 0.00	0.91 ± 0.01
	Without all three	2.85 ± 0.03	4.30 ± 0.06	4.74 ± 0.07	0.66 ± 0.00	0.60 ± 0.00	0.91 ± 0.0

NRSur favored over SEOB, but result mainly determined only by one event (GW200129_065458)

Without the three events that significantly favor or disfavor one of the models, we find no preference for any of the approximants.

Results - Precession

		Probability								
Event	NRSur	SEOB	IMRX	IMRT						
GW150914	27.55 ± 0.7	16.22 ± 0.8	23.34 ± 0.7	32.88 ± 0.7						
GW190519_153544	20.82 ± 0.6	20.95 ± 0.6	40.87 ± 0.5	17.35 ± 0.6						
GW190521_074359	14.76 ± 1.2	40.50 ± 1.0	17.53 ± 1.2	27.22 ± 1.1						
GW190620_030421	32.98 ± 0.6	19.48 ± 0.6	20.22 ± 0.6	27.32 ± 0.6						
GW190630_185205	33.79 ± 0.6	15.36 ± 0.6	18.90 ± 0.6	31.95 ± 0.6						
GW190910_112807	22.86 ± 0.6	25.92 ± 0.6	27.85 ± 0.6	23.37 ± 0.6						
GW191222_033537	28.11 ± 0.5	20.58 ± 0.6	18.78 ± 0.6	32.53 ± 0.5						
$GW200112_155838$	30.56 ± 0.6	15.61 ± 0.6	19.82 ± 0.6	34.01 ± 0.5						
GW200224_222234	21.82 ± 0.6	23.39 ± 0.6	40.43 ± 0.5	14.36 ± 0.7						
GW200311_115853	15.68 ± 0.6	27.70 ± 0.6	35.69 ± 0.6	20.93 ± 0.6						
GW190521	31.78 ± 0.6	26.39 ± 0.6	4.60 ± 0.7	37.23 ± 0.5						
GW191109_010717	7.54 ± 1.6	62.29 ± 1.0	5.06 ± 1.7	25.11 ± 1.5						
GW200129 065458	46.94 ± 1.4	$0.66^{+1.9}_{-0.66}$	51.14 ± 1.3	$1.25 \ ^{+1.9}_{-1.25}$						

$\chi_{\rm p}$ JS divergence with prior

Event	NRSur	SEOB	IMRX	IMRT	Combined
GW150914	0.008	0.010	0.050	0.017	0.015
$GW190519_153544$	0.010	0.017	0.010	0.011	0.011
$GW190521_074359$	0.037	0.029	0.027	0.029	0.029
$GW190620_030421$	0.010	0.006	0.016	0.012	0.006
$GW190630_185205$	0.030	0.067	0.049	0.065	0.050
$GW190910_112807$	0.023	0.012	0.009	0.014	0.014
${\rm GW191222}_033537$	0.012	0.011	0.014	0.012	0.011
$GW200112_155838$	0.012	0.015	0.011	0.014	0.012
GW200224_222234	0.008	0.011	0.024	0.010	0.010
${\rm GW200311}_115853$	0.026	0.018	0.041	0.038	0.031
GW190521	0.243	0.158	0.007	0.264	0.202
GW191109_010717	0.095	0.227	0.070	0.422	0.243
$GW200129_065458$	0.459	0.005	0.330	0.051	0.378

Results - Precession

Probability				$\chi_{ m p}$.	JS div	regen	ce wi	th prior		
Event	NRSur	SEOB	IMRX	IMRT	Event	NRSur	SEOB	IMRX	IMRT	Combined
GW150914	27.55 ± 0.7	16.22 ± 0.8	23.34 ± 0.7	32.88 ± 0.7	GW150914	0.008	0.010	0.050	0.017	0.015
GW190519_153544	20.82 ± 0.6	20.95 ± 0.6	40.87 ± 0.5	17.35 ± 0.6	$GW190519_{153544}$	0.010	0.017	0.010	0.011	0.011
GW190521_074359	14.76 ± 1.2	40.50 ± 1.0	17.53 ± 1.2	27.22 ± 1.1	GW190521_074359	0.037	0.029	0.027	0.029	0.029
GW1					CIW100200 080401	0.010	0.000	0.010	0.010	0.006

^{GW1} Models that recover precession have a higher probability

GW191222_033537	28.11 ± 0.5	20.58 ± 0.6	18.78 ± 0.6	32.53 ± 0.5	
GW200112_155838	30.56 ± 0.6	15.61 ± 0.6	19.82 ± 0.6	34.01 ± 0.5	
GW200224_222234	21.82 ± 0.6	23.39 ± 0.6	40.43 ± 0.5	14.36 ± 0.7	
GW200311_115853	15.68 ± 0.6	27.70 ± 0.6	35.69 ± 0.6	20.93 ± 0.6	
GW190521	31.78 ± 0.6	26.39 ± 0.6	4.60 ± 0.7	37.23 ± 0.5	
GW191109_010717	7.54 ± 1.6	62.29 ± 1.0	5.06 ± 1.7	25.11 ± 1.5	
GW200129_065458	46.94 ± 1.4	$0.66^{+1.9}_{-0.66}$	51.14 ± 1.3	$1.25 \ ^{+1.9}_{-1.25}$	

GW191222_033537	0.012	0.011	0.014	0.012	0.011
${\rm GW200112}_155838$	0.012	0.015	0.011	0.014	0.012
$GW200224_{222234}$	0.008	0.011	0.024	0.010	0.010
$GW200311_115853$	0.026	0.018	0.041	0.038	0.031
GW190521	0.243	0.158	0.007	0.264	0.202
GW191109_010717	0.095	0.227	0.070	0.422	0.243
$GW200129_065458$	0.459	0.005	0.330	0.051	0.378

Conclusions

- We analyzed the 13 heaviest events with significant SNR in GWTC-3 with a hypermodels approach to quantify model preferences
- Overall, no model is consistently preferred or disfavored
- No trends of model preference based on source parameters or signal SNR
- For three events (GW190521, GW191109, GW200129) we find strong preference for some of the models, *but*
 - different models
 - these events have short duration or potential data quality issues
- Combining results from all the events: $\mathcal{O}_{SEOB}^{NRSur} = 29.43$, but this result is determined only by GW200129. Without the three events above, no significant preference for any model
- However, for all the events with a strong preference, we find that the preferred models are the ones which recover precession

Backup -Parameters Posteriors

Backup - Injections

logL