Contribution ID: 27 Type: not specified

Late-time signal from binary black hole coalescences

Wednesday, 18 September 2024 17:00 (20 minutes)

Recently, studies on numerical evolutions of eccentric binary inspirals found a several orders of magnitude enhancement of the post-ringdown tail amplitude. This characteristic might render the tail a phenomenon of observational interest, opening the way to experimental verification of this general relativistic prediction in the near future. I will present an analytical perturbative model that accurately predicts the numerically observed tail evolution.

Considering a source term describing an infalling test-particle in generic non-circular orbits, driven by post-Newtonian radiation reaction, I derive an integral expression over the system's entire history, showing how the post-ringdown tail is inherited from the non-circular inspiral in a non-local fashion. Beyond its excellent agreement with numerical evolutions, the model explains the tail amplification with the progenitors' binary eccentricity. Specifically, I will show that the tail is enhanced by motion at large distances from the black hole, with small tangential velocity.

I will prove the tail to be a superposition of many power-laws, with each term's excitation coefficient depending on the specific inspiral history. A single power law is recovered only in the limit of asymptotically late times, consistent with Price's results and the classical soft-graviton theorem. I will conclude by discussing future directions, including the non-linear extension to comparable masses, exploiting the fact that for highly eccentric binaries, our model predicts the tail amplitude to be determined mainly by the motion near the last apastron.

Primary author: DE AMICIS, Marina (Niels Bohr Institute)

Presenter: DE AMICIS, Marina (Niels Bohr Institute)

Session Classification: Contributed Talks