Stress, it's MOT a porrer low

=> Show that for testpeck (plunge) the tail amplitude is a the sume Yea TODO

Inspiral-inherited ringdown tails

maybe = 2) discuss zeroes in A by studing 3 Asymptote + Marina De Amicis, Simone Albanesi, Gregorio Carullo [2406.17018]

1st TEONGRAV international workshop on theory of gravitational waves

strong. niels bohr institute

KØBENHAVNS UNIVERSITET

- 1 4 - 1 (+', RIP) (RIP) (+', Q) ~ () A = E time C n(to)(*)

Danmarks Grundforskningsfond **Danish National Research Foundation**

European Research Council Established by the European Commissi

$$\begin{bmatrix} \partial_t^2 - \partial_{r_*}^2 + V_{\ell m}^{(e/o)}(r_*) \end{bmatrix} \Psi_{\ell m}^{(e/o)}(t, r_*) = 0$$

$$\Psi_{\ell m}^{(e/o)}(t = 0, r) = \psi_0 \quad \partial_t \Psi_{\ell m}^{(e/o)}(t = 0, r) = \zeta_0$$

Prediction at \mathcal{I}^+ :

$$\begin{bmatrix} \partial_t^2 - \partial_{r_*}^2 + V_{\ell m}^{(e/o)}(r_*) \end{bmatrix} \Psi_{\ell m}^{(e/o)}(t, r_*) = 0$$
$$\Psi_{\ell m}^{(e/o)}(t = 0, r) = \psi_0 \quad \partial_t \Psi_{\ell m}^{(e/o)}(t = 0, r) = \zeta_0$$

Atail $r\ell+2$

$$\tau \equiv t - r_*$$
$$r_* \equiv r + 2M \ln(r - 2)$$

Prediction at \mathcal{I}^+ :

$$\begin{bmatrix} \partial_t^2 - \partial_{r_*}^2 + V_{\ell m}^{(e/o)}(r_*) \end{bmatrix} \Psi_{\ell m}^{(e/o)}(t, r_*) = 0$$
$$\Psi_{\ell m}^{(e/o)}(t = 0, r) = \psi_0 \quad \partial_t \Psi_{\ell m}^{(e/o)}(t = 0, r) = \zeta_0$$

$$\tau \equiv t - r_*$$
$$r_* \equiv r + 2M \ln(r - 2)$$

$$\begin{bmatrix} \partial_t^2 - \partial_{r_*}^2 + V_{\ell m}^{(e/o)}(r_*) \end{bmatrix} \Psi_{\ell m}^{(e/o)}(t, r_*) = 0$$
$$\Psi_{\ell m}^{(e/o)}(t = 0, r) = \psi_0 \quad \partial_t \Psi_{\ell m}^{(e/o)}(t = 0, r) = \zeta_0$$

$$\tau \equiv t - r_*$$
$$r_* \equiv r + 2M \ln(r - 2)$$

An exciting journey: previous results for EMR

An exciting journey: previous results for EMR

[Albanesi et al, Phys. Rev. D 108, 084037]

 $e_0 = 0.9$

Amplitude enhanced of several orders of magnitude by eccentricity

 $e_0 = 0.5$

 $e_0 = 0.0$

350

300

An exciting journey: previous results for EMR

[Carullo and **De Amicis**, 2310.12968]

• Is enhancement physical?

• Foundational problem in General Relativity: • Two-body problem not fully understood

- Enhancement with eccentricity makes the tail potentially observable • Plenty possible channels of highly eccentric mergers • Could give constraints on inspiral parameters

Framework

- Test particle μ infalling in a Schwarzschild BH
- Perturbation theory

Framework

- Test particle μ infalling in a Schwarzschild BH
- Perturbation theory
- Signal extracted at scri+ (null infinity)

Framework

- Test particle μ infalling in a Schwarzschild BH
- Perturbation theory
- Signal extracted at scri+ (null infinity)
 - As observed by real detectors
 - Price's law:

• $\Psi_{\ell m} \propto \frac{1}{\tau^{\ell+2}}$, $\tau \equiv t - r_*$ at \mathscr{I}^+

Numerical evolutions

$$\left[\partial_{t}^{2} - \partial_{r_{*}}^{2} + V_{\ell m}^{(e/o)}(r_{*})\right] \Psi_{\ell m}^{(e/o)}(t, r_{*}) = S_{\ell m}^{(e/o)}(t, r_{*})$$

$$\Psi_{\ell m}^{(e/o)}(t=0,r) = \partial_t \Psi_{\ell m}^{(e/o)}(t=0,r) = 0$$

+ Hamiltonian equations of motion for

the trajectory, driven radiation-reaction

[Chiaramello and Nagar, Phys. Rev. D 101, 101501 (2020)] [Albanesi, Nagar, Bernuzzi, Phys. Rev. D 104, 024067 (2021)]

 $^{(0)}(t,r)$

tion for eaction

Numerical evolutions

$$\left[\partial_t^2 - \partial_{r_*}^2 + V_{\ell m}^{(e/o)}(r_*)\right] \Psi_{\ell m}^{(e/o)}(t, r_*) = S_{\ell m}^{(e/o)}(t, r_*)$$

$$\Psi_{\ell m}^{(e/o)}(t=0,r)=\partial_t\Psi_{\ell m}^{(e/o)}(t=0,r)=0$$

+ Hamiltonian equations of motion for

the trajectory, driven radiation-reaction

[Chiaramello and Nagar, Phys. Rev. D 101, 101501 (2020)] [Albanesi, Nagar, Bernuzzi, Phys. Rev. D 104, 024067 (2021)]

- Analytically computed through Post-Newtonian expansions of fluxes extracted at infinity
- Allow to evolve a generic orbit up to merger

(0)(t,r)

Numerical evolutions

$$\left[\partial_t^2 - \partial_{r_*}^2 + V_{\ell m}^{(e/o)}(r_*)\right] \Psi_{\ell m}^{(e/o)}(t, r_*) = S_{\ell m}^{(e/o)}(t, r_*)$$

$$\Psi_{\ell m}^{(e/o)}(t=0,r)=\partial_t\Psi_{\ell m}^{(e/o)}(t=0,r)=0$$

+ Hamiltonian equations of motion for

the trajectory, driven radiation-reaction

[Chiaramello and Nagar, Phys. Rev. D 101, 101501 (2020)] [Albanesi, Nagar, Bernuzzi, Phys. Rev. D 104, 024067 (2021)]

- Analytically computed through Post-Newtonian expansions of fluxes extracted at infinity
- Allow to evolve a generic orbit up to merger

Regge-Wheeler/ Zerilli equations:

 $\left[\partial_t^2 - \partial_{r_*}^2 + V_{\ell m}(r_*)\right] \Psi_{\ell m}(t, r_*) = S_{\ell m}(t, r)$

 $\Psi_{\ell m}(t=0,r) = \partial_t \Psi_{\ell m}(t=0,r) = 0$

$$\left[\partial_t^2 - \partial_{r_*}^2 + V_{\ell m}(r_*) - \frac{1}{2} \nabla_{\ell m}(r_*) - \frac{1}{2$$

Most general solution:

$$\Psi_{\ell m}(\tau,\rho_+) = \int_{T_{in}}^{\tau-\rho_+} dt'$$

 $\rho_+ \equiv \text{location of } \mathscr{F}^+ \text{ in the }$ compactified coordinate

 $(r_*) \Big] \Psi_{\ell m}(t, r_*) = S_{\ell m}(t, r)$

 $\Psi_{\ell m}(t=0,r) = \partial_t \Psi_{\ell m}(t=0,r) = 0$

 $tt' \int dr' S_{\ell m}(t', r') G_{\ell}(\tau, t'; r', \rho_{+})$

$$\left[\partial_t^2 - \partial_{r_*}^2 + V_{\ell m}(r_*) - \frac{1}{2} \nabla_{\ell m}(r_*) - \frac{1}{2$$

Most general solution:

$$\Psi_{\ell m}(\tau,\rho_+) = \int_{T_{in}}^{\tau-\rho_+} dt'$$

 $\rho_+ \equiv \text{location of } \mathcal{I}^+ \text{ in the}$ compactified coordinate

 $[r_*) \Big] \Psi_{\ell m}(t, r_*) = S_{\ell m}(t, r)$

 $\Psi_{\ell m}(t=0,r) = \partial_t \Psi_{\ell m}(t=0,r) = 0$

 $dt' dr' S_{\ell m}(t', r') G_{\ell}(\tau, t'; r', \rho_{+})$

Price's law propagator

$$\left[\partial_t^2 - \partial_{r_*}^2 + V_{\ell m}(r_*) - \frac{1}{2} \nabla_{\ell m}(r_*) - \frac{1}{2$$

Most general solution:

$$\Psi_{\ell m}(\tau,\rho_{+}) = \int_{T_{in}}^{\tau-\rho_{+}} dt' \int dr' S_{\ell m}(t',r') G_{\ell}(\tau,t';r',\rho_{+})$$

 $\rho_+ \equiv \text{location of } \mathcal{I}^+ \text{ in the}$ compactified coordinate

$S_{\ell m}(t,r) = f_{\ell m}(t,r)\delta(r-r(t)) + g_{\ell m}(t,r)\partial_r\delta(r-r(t))$

- $r_*) \Big] \Psi_{\ell m}(t, r_*) = S_{\ell m}(t, r)$
- $\Psi_{\ell m}(t=0,r) = \partial_t \Psi_{\ell m}(t=0,r) = 0$

Price's law propagator

$$\partial_t^2 - \partial_{r_*}^2 + V_{\ell m}(r_*) \Big] \Psi_{\ell m}(t, r_*) = S_{\ell m}(t, r)$$
$$\Psi_{\ell m}(t = 0, r) = \partial_t \Psi_{\ell m}(t = 0, r) = 0$$

Most general solution:

$$\Psi_{\ell m}(\tau,\rho_{+}) = \int_{T_{in}}^{\tau-\rho_{+}} dt' \int dr' S_{\ell m}(t',r') \frac{G_{\ell}(\tau,t';r',\rho_{+})}{Price's \, \text{law propaga}}$$

$$Price's \, \text{law propaga}$$

$$\int_{T_{in}}^{\tau+\rho_{+}} dt' \frac{r^{\ell}(t') \Big[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t') \right) - \left(\ell + 1 \right) g_{\ell m}(t') \Big]_{r=r}}{\left(\tau - \rho_{+} - t' \right)^{\ell+2}}$$

 ρ

$$\Psi_{\ell m}(\tau,\rho_{+}) = \int_{T_{in}}^{\tau-\rho_{+}} dt' \int dr' S_{\ell m}(t',r') \frac{G_{\ell}(\tau,t';r',\rho_{+})}{Price's \, \text{law propaga}}$$

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{T_{in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \left[r\left(f_{\ell m}(t') - \partial_{r}g_{\ell m}(t')\right) - (\ell+1)g_{\ell m}(t')\right]_{r=r}}{(\tau-\rho_{+}-t')^{\ell+2}}$$

[De Amicis, Albanesi and Carullo, 2406.17018]

$$S_{\ell m}(t,r) = f_{\ell m}(t,r)\delta(r-r(t)) + g_{\ell m}(t,r)\partial_r\delta(r-r(t)) + g_{\ell m}$$

Analytical integral form of the tail:

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{T_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \Big[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t')\right) - \left(\ell+1\right) g_{\ell m}(t') \Big]_{r=r}}{\left(\tau-\rho_{+}-t'\right)^{\ell+2}}$$

• Tail as a memory effect

[De Amicis, Albanesi and Carullo, 2406.17018]

Analytical integral form of the tail:

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{T_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \Big[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t')\right) - \left(\ell+1\right) g_{\ell m}(t') \Big]_{r=r}}{\left(\tau-\rho_{+}-t'\right)^{\ell+2}}$$

Tail as a memory effect
Not an exact power-law behavior

[De Amicis, Albanesi and Carullo, 2406.17018]

[De Amicis, Albanesi and Carullo, 2406.17018]

Take a breather

- Integral model for tail in EMR, as a memory effect
- Tail exponent is in general non monotonic
- Tail amplitude is enhanced by eccentricity

Take a breather

- Integral model for tail in EMR, as a memory effect
- Tail exponent is in general non monotonic
- Tail amplitude is enhanced by eccentricity

 $\tau - \rho_+ \gg t_{\rm in}, t_f$

 t_{in} = initial time $t_f = \text{common horizon}$

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{c_{\ell}}{\tau^{\ell+2}} \int_{t_{\text{in}}}^{t_{f}} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{t_{n}} \frac{1}{\tau^{\ell+2}}\right]_{t_{\text{in}}}^{t_{f}} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{t_{f}} \frac{1}{\tau^{\ell+2}}\right]_{t_{\text{in}}}^{t} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{t_{f}} \frac{1}{\tau^{\ell+2}}\right]_{t'}^{t} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{t} \frac{1}{\tau^{\ell+2}}\right]_{$$

• Superposition of power-laws

 $\sum_{n=1}^{\infty} \frac{(\ell+1+n)!}{n!(\ell+1)!} \left(\frac{t'+\rho_{+}}{\tau}\right)^{n} \qquad \qquad \tau - \rho_{+} \gg t_{\text{in}}, t_{f}$

 t_{in} = initial time $t_f = \text{common horizon}$

$$\Psi_{\ell m}(\tau,\rho_{+}) = \left(\frac{c_{\ell}}{\tau^{\ell+2}}\right)_{t_{\text{in}}}^{t_{f}} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{\infty} \frac{c_{\ell}}{\tau^{\ell+2}}\right]_{t_{\text{in}}}^{t_{f}} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{\infty} \frac{c_{\ell}$$

- Superposition of power-laws
- Slowest decay is Price's law

 $\sum_{n=1}^{\infty} \frac{(\ell+1+n)!}{n!(\ell+1)!} \left(\frac{t'+\rho_{+}}{\tau}\right)^{n}$

 t_{in} = initial time $t_f = \text{common horizon}$

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{c_{\ell}}{\tau^{\ell+2}} \int_{t_{\rm in}}^{t_{f}} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{\infty} \frac{c_{\ell}}{\tau^{\ell+2}}\right]_{t_{\rm in}}^{t_{f}$$

- Superposition of power-laws
- Slowest decay is Price's law
- Excitation coefficient of each power-law depends on:

amount of history

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{c_{\ell}}{\tau^{\ell+2}} \int_{t_{\text{in}}}^{t_{f}} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{\infty} \frac{c_{\ell}}{\tau^{\ell+2}}\right]_{t_{\text{in}}}^{t_{f}} dt' S_{\ell}(t') \left[1 + \sum_{n=1}^{\infty} \frac{c_{\ell}}{$$

- Superposition of power-laws
- Slowest decay is Price's law
- Excitation coefficient of each power-law depends on:
 - amount of histor
 - specific orbit

 $\sum_{i=1}^{\infty} \frac{(\ell+1+n)!}{n!(\ell+1)!} \left(\frac{t'+\rho_{+}}{\tau}\right)^{n}$

 t_{in} = initial time $t_f = \text{common horizon}$

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{c_{\ell}}{\tau^{\ell+2}} \int_{t_{\rm in}}^{t_{f}} dt' \, S_{\ell}(t') \left[1 + \sum_{n=1}^{\infty} \frac{\left(\ell + 1 + n\right)!}{n! \left(\ell + 1\right)!} \left(\frac{t' + \rho_{+}}{\tau}\right)^{n} \right] \qquad (\tau - \rho_{+} \gg t_{\rm in})^{n} = \frac{c_{\ell}}{\tau} \left(\frac{t' + \rho_{+}}{\tau}\right)^{n} = \frac{c_{\ell}}{\tau} \left(\frac{t' + \rho_{+}$$

Take a breather

- Integral model for tail in EMR, as a memory effect
- Tail as superposition of power laws $\tau^{-\ell-2-n}$, with $n \ge 0$
- Tail amplitude is enhanced by eccentricity

Isolate the part of the trajectory which determines the amplitude at the transition from QNMs to tail

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{t_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \Big[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t') \right) - \left(\ell+1 \right) g_{\ell m}(t') \Big]_{r=r}}{\left(\tau - \rho_{+} - t' \right)^{\ell+2}}$$

Isolate the part of the trajectory which determines the amplitude at the transition from QNMs to tail

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{t_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \left[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t') \right) - \left(\ell+1 \right) g_{\ell m}(t') \right]_{r=r}}{\left(\tau - \rho_{+} - t' \right)^{\ell+2}}$$

Isolate the part of the trajectory which determines the amplitude at the transition from QNMs to tail

- **X** Apastri
- Periastri

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{t_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \left[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t') \right) - \left(\ell+1 \right) g_{\ell m}(t') \right]_{r=r}}{\left(\tau - \rho_{+} - t' \right)^{\ell+2}}$$

Isolate the part of the trajectory which determines the amplitude at the transition from QNMs to tail

- **X** Apastri
- Periastri
- Tail amplitude:
- Determined by motion near last apastron

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{t_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \left[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t') \right) - \left(\ell+1 \right) g_{\ell m}(t') \right]_{r=r}}{\left(\tau - \rho_{+} - t' \right)^{\ell+2}}$$

Isolate the part of the trajectory which determines the amplitude at the transition from QNMs to tail

- **X** Apastri
- Periastri
- Tail amplitude:
 - Determined by motion near last apastron

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{t_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \left[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t') \right) - \left(\ell+1 \right) g_{\ell m}(t') \right]_{r=r}}{\left(\tau - \rho_{+} - t' \right)^{\ell+2}}$$

Isolate the part of the trajectory which determines the amplitude at the transition from QNMs to tail

- **X** Apastri
- Periastri
- Tail amplitude:
 - Determined by motion

near last apastron

 Cancellation among in/outgoing motion

$$\Psi_{\ell m}(\tau,\rho_{+}) = \frac{(-1)^{\ell} 2^{\ell+1} \ell! (\ell+1)!}{(2\ell+1)!} \int_{t_{\rm in}}^{\tau-\rho_{+}} dt' \frac{r^{\ell}(t') \left[r \left(f_{\ell m}(t') - \partial_{r} g_{\ell m}(t') \right) - \left(\ell+1 \right) g_{\ell m}(t') \right]_{r=r}}{\left(\tau - \rho_{+} - t' \right)^{\ell+2}}$$

Isolate the part of the trajectory which determines the amplitude at the transition from QNMs to tail

- **X** Apastri
- Periastri
- Tail amplitude:
 - Determined by motion
 - near last apastron .
 - Cancellation among in/outgoing motion

Expand in large *r* and small p_{φ}/r : $\Psi_{\ell m}(\tau, \rho_{+}) =$

- **X** Apastri
- Periastri

$$\int_{t_{\rm in}}^{t_f} dt' \frac{r^{\ell}(t')e^{-im\varphi(t')}P_{\ell m}\left(\cos\theta_0\right)}{\left(\tau - t' - \rho_+\right)^{\ell+2}} \cdot \left[a_1 - \frac{a_1}{2}\dot{r}^2 + a_2\dot{r}\frac{p_{\varphi}}{r} + \left(a_3 + \frac{a_1}{2}\right)^{\ell+2}\right]$$

Expand in large *r* and small p_{φ}/r : $\Psi_{\ell m}(\tau, \rho_{+}) =$

- **X** Apastri
- Periastri

$$\int_{t_{\rm in}}^{t_f} dt' \frac{r^{\ell}(t)e^{-im\varphi(t')}P_{\ell m}\left(\cos\theta_0\right)}{\left(\tau - t' - \rho_+\right)^{\ell+2}} \cdot \left[a_1 - \frac{a_1}{2}\dot{r}^2 + a_2\dot{r} - \frac{\rho_{m}}{r} + \left(a_3 + \frac{a_1}{2}\right)^{\ell+2}\right]$$

Oscillanting contribution can induce destructive interference Tail maximied for radial infall!

Expand in large *r* and small p_{φ}/r : $\Psi_{\ell m}(\tau, \rho_{+}) =$

- **X** Apastri
- Periastri

$$\int_{t_{in}}^{t_{r}} dt' \frac{r^{\ell}(t')e^{-im\varphi(t')}P_{\ell m}(\cos\theta_{0})}{(\tau - t' - \rho_{+})^{\ell + 2}} \cdot \left[a_{1} - \frac{a_{1}}{2}\dot{r}^{2} + a_{2}\dot{r}\frac{P_{\varphi}}{r} + \left(a_{3} + \frac{a_{2}}{2}\dot{r}\frac{P_{\varphi}}{r}\right) + \left(a_{3} + \frac{a_{3}}{2}\dot{r}\frac{P_{\varphi}}{r}\right) + \left(a_{3} + \frac{$$

Conclusions

- Integral model for tail in EMR, as a memory effect
- Tail as superposition of power laws $\tau^{-\ell-2-n}$, with $n \ge 0$
- Tail emission enhanced for motion at large distances $r \gg M$, with small tangential velocity. Hence, emission is maximized at apastra

Future directions III

- Go back to comparable masses
 - More accurate simulations SXS (with Keefe Mitman, Hannes Rüter, Leo Stein, Melize Ferrus...)
 - Proper extraction at \mathcal{I}^+ using Cauchy Characteristic Extraction method (CCE) [Bishop et al, Phys. Rev. D 54, 6153(1996)]
 - Compare different eccentricities:
 - What happens for an head-on?
 - Can evolve only from last orbit
- Extend the model to Kerr
 - Long-range propagator in Kerr
 - Test for EMR against Teukode [Harms et al,CQG 31, 245004(2014)]
- Estimate the observability

