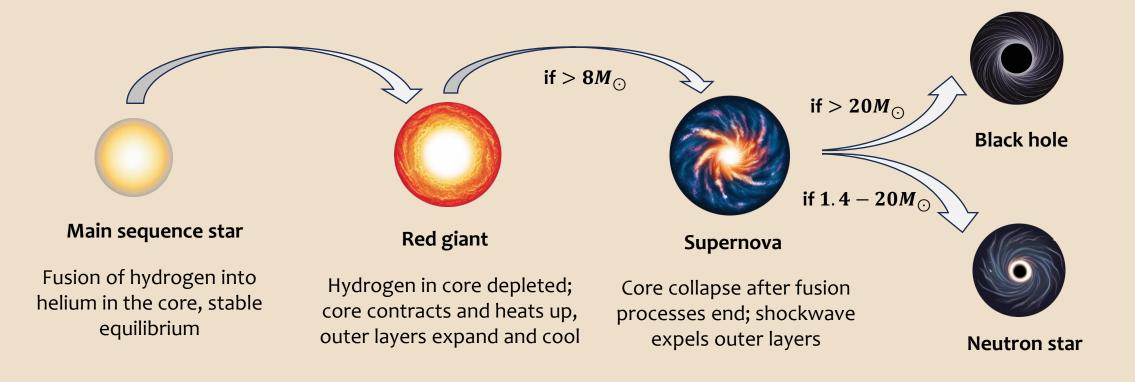
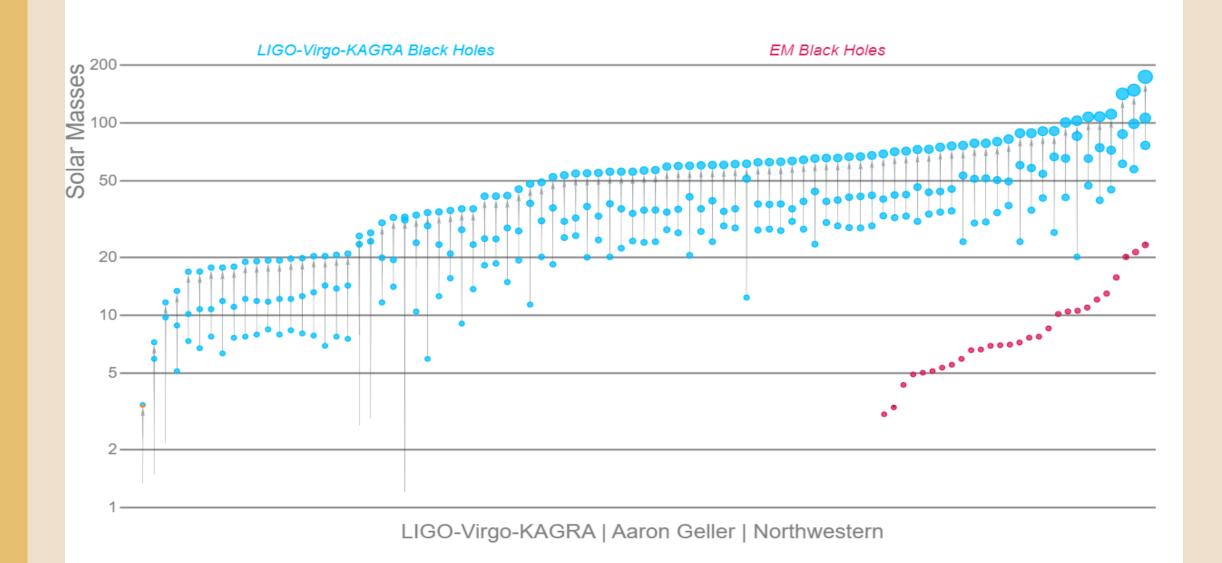

Gravitational waves from subsolar compact objects: implications for cosmology and high-density nuclear physics

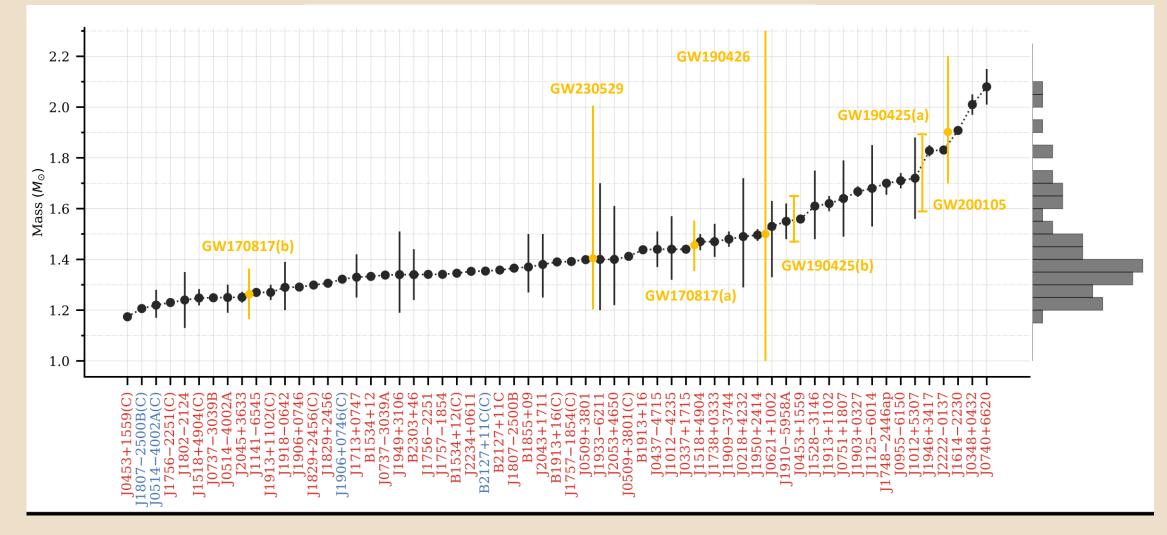
Massimo Vaglio 18/09/2024


1st TEONGRAV workshop on Gravitational Waves

Based on: arXiv:2508.14287 – F.Crescimbeni, G.Franciolini, P.Pani, M.Vaglio



Why subsolar? Standard formation scenario of BH-NS


Conventional formation models suggest that black holes (BHs) and neutron stars (NSs), should have masses exceeding the solar mass

Mass distribution of black holes (EM+GW)

Mass distribution of neutron stars (binary pulsars + GW)

What would be the implications of a subsolar GW event?

Methodology & models

We performed parameter estimation on real and mock data and compute the Bayes factors to compare different models

$$p(\theta|s) = \frac{\mathcal{L}(s|\theta)\pi(\theta)}{Z(s)} \qquad \qquad \mathcal{B}_{A/B} = \frac{Z_A}{Z_B}$$

Bayes formula Bayes factor

We used the public software BILBY [G. Ashton et al. (2019)] and a waveform template:

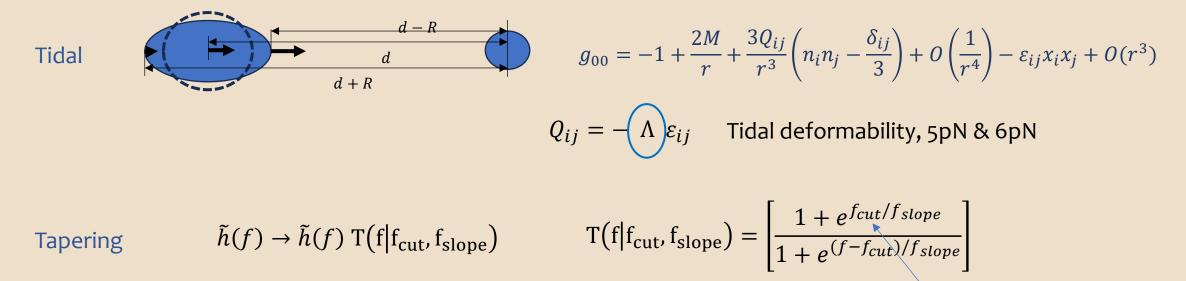
Frequency-domain TaylorF2

$$\tilde{h}(f, \theta) = \mathcal{A}(f, \theta) e^{-i\phi(f, \theta)}$$

Quasicircular Alligned spins 3.5 pN point particle 2pN spin corrections

Parameters: $\boldsymbol{\theta} = \{m_1, m_2, d_L, \theta, \phi, \theta_{JN}, \psi, t_c, \phi_c, \chi_1, \chi_2\}$

Analyzing the trigger event SSM200308

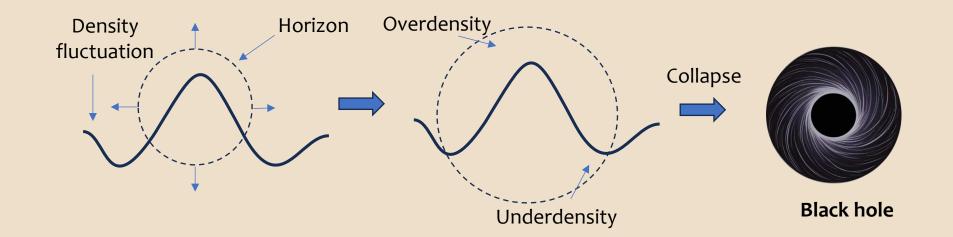

In the last concluded LVK observing run (O3b) three candidates of SSM binary BH events were identified, SSM200308 was the loudest.

	IMRPhenomPv2					
Model	BH1	BH2	Agnostic	NS1	NS2	BS
$m_1[M_\odot]$	$0.65^{+0.17}_{-0.15}$	$0.72\substack{+0.20 \\ -0.17}$	$0.57^{+0.13}_{-0.10}$	$0.59\substack{+0.29\\-0.08}$	$0.82\substack{+0.20 \\ -0.14}$	$0.50\substack{+0.10 \\ -0.07}$
$m_2[M_\odot]$	$0.26\substack{+0.07\\-0.04}$	$0.23\substack{+0.06\\-0.04}$	$0.29\substack{+0.05\\-0.05}$	$0.27\substack{+0.03 \\ -0.08}$	$0.21\substack{+0.03\\-0.03}$	$0.32\substack{+0.05\\-0.05}$
$\chi_{ m eff}$	$0.41^{+0.05}_{-0.04}$	$0.41^{+0.22}_{-0.05}$	$-0.13^{+0.08}_{-0.09}$	$0.15\substack{+0.16 \\ -0.43}$	$0.72\substack{+0.07 \\ -0.26}$	$0.36\substack{+0.25\\-0.21}$
$\chi_{ m p}$	$0.45\substack{+0.26\\-0.26}$	-	-	-	-	-
$d_L[{ m Mpc}]$	80^{+37}_{-29}	83^{+41}_{-33}	97^{+45}_{-41}	110^{+139}_{-50}	76^{+37}_{-28}	106^{+84}_{-45}
$\Lambda_1/10^5$	-	-	-4^{+15}_{-10}	5^{+28}_{-3}	6^{+8}_{-5}	-
$\Lambda_2/10^7$	-	-	3^{+23}_{-12}	$1.3\substack{+0.6\\-0.8}$	$0.3\substack{+0.3 \\ -0.3}$	-
$\kappa_1/10^3$	-	-	15^{+347}_{-351}	-	-	-
$\kappa_2/10^3$	-	-	-287^{+114}_{-120}	-	-	-
$\log_{10} \tilde{\lambda}_f$	-	-	$-1.01^{+0.65}_{-0.42}$	-	-	-
$M_B[M_{\odot}]$	-	-	-	-	-	10^{+2}_{-2}
$\log_{10} \mathcal{B}$	-	0.31	-1.64	-2.68	0.22	-2.26

→ M. Prunier et al. (2023)

NS₂ vs BH₂

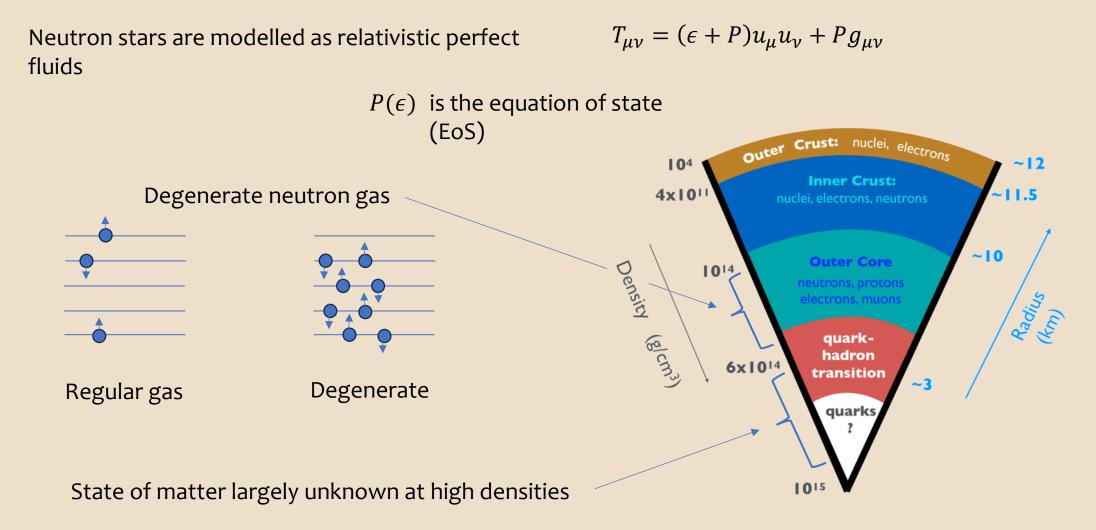
NS2 = BH2 + Tidal + Tapering $\theta_{NS2} = \theta_{BH2} \cup \{\Lambda_1, \Lambda_2\}$


Tidal disruption

Detector	$BH2 \rightarrow NS2$	$\texttt{NS2} \rightarrow \texttt{BH2}$	
O4, $SNR=15$	-3.1	-2.9	
O4, SNR= 25	-5.1	-11.0	

Implications for PBH: PBHs abundance

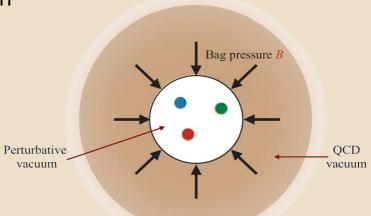
Primordial black holes are formed by collapse of overdense regions in in radiation dominated universe


 $M_{BH} \sim \frac{4\pi}{3} \rho_r H^{-3}$ PBH Mass ~ horizon mass at the formation

Based on a model saturating the bounds from GWTC-3, to explain an event like SSM200308 one would need

$$\frac{\rho_{PBH}}{\rho_{DM}} \equiv f_{PBH} \gtrsim \mathcal{O}(10^{-2})$$

NSs equation of state (EoS)

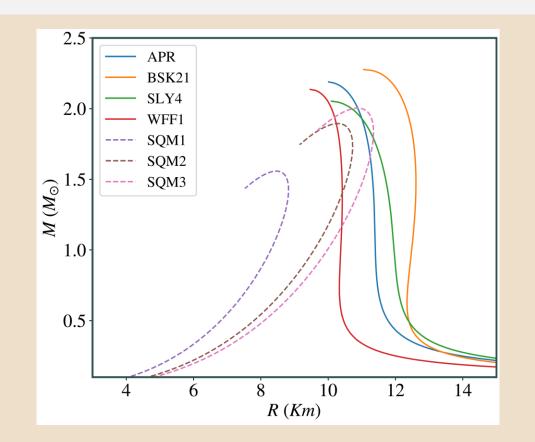

Credit: 3G Science White Paper

Strange quark-matter stars

Strange quark-matter models assumes a balance of up, down, and strange quarks.

EoS is obtained using perturbative QCD and an MIT-type bag model in which quarks are confined within a "bag" and interact via the strong force

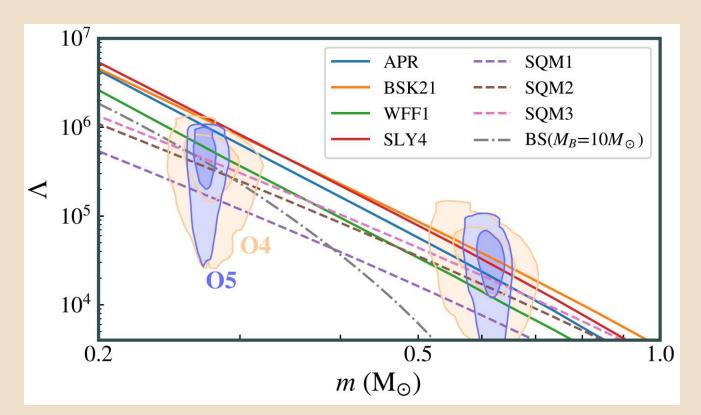
J. M. Lattimer and M. Prakash (2001)



Features of Hadrons. In: Journey to the Bound States.

This model often leads to a softer EoS compared to traditional neutron star matter because the pressure increase with density may be less steep

$$P(\epsilon) = \frac{\epsilon - B_{eff}}{3}$$


Implications for NSs: equation of state

EoS	Strongly interacting components		
APR, BSK21, SLY4, WFF1	Protons and neutrons		
SQM1-3	Quarks u,d,s		

Implications for NSs: equation of state

SQM3 injected in O4 (O5) with SNR = 25 (SNR = 44)

The analysis is conservative: the inference considers Λ_1 and Λ_2 as independent

Implications for NSs: equation of state

Detectors	$m_1[M_\odot]$	${ t APR} o { t SQM3}$	$ ext{SQM3} ightarrow ext{APR}$	$rac{ extsf{WFF1}}{ extsf{SQM3}} ightarrow$	$ ext{SQM3} ightarrow ext{WFF1}$
O4, $SNR = 25$	0.63	-1.9	-3.8	0.1	-0.4
	0.27	-10.2	-19.9	-2.7	-5.0
O5, $SNR = 44$	0.63	-7.0	-12.3	-0.2	-1.0
	0.27	-37.5	-88.8	-11.3	-25.1

Vith O4-O5 we will able to distinguish between strange stars and neutron stars in subsolar range

Excluding WFF1 requires higher SNR or light comparable-mass SSM binaries

Conclusions

Already with current sensitivity one could decisively exclude some models of NSs and more exotic objects compared to the PBH hypothesis

In O4 this distinction would be crystal-clear, confirming or ruling out a putative PBH event

Using O4-O5 data it would be possible to use tidal-deformability measurements to decisively confirm/exclude light NSs with strange quark matter

This opportunity is provided by the fact that quark stars have a much smaller radius and tidal deformability than ordinary-EoS NSs in the SSM range, while overall, the tidal is very large