Exploring the DETECTABILITY of ASYMMETRIC BINARIES

surrounded by DARK MATTER HALOS

SARA GLIORIO

PhD Ø

S GRAN SASSO SCIENCE INSTITUTE SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Prof. ANDREA MASELLI

Supervisor

TEONGRAV INTERNATIONAL WORKSHOP

September 16th-20th, 2024 – Sapienza University of Rome

MOTIVATION: WHY ASYMMETRIC BINARIES?

LISA

→ milli-Hz frequency band → New families of

sources (coalescing binaries with large mass asymmetries) EXTREME MASS-RATIO INSPIRALS

M_{BH}

SCIENCE CASE

Golden probes: inspiral phase of EMRIs $M_{BH} = (10^{5} - 10^{7}) M_{\odot}$ $\mu = (1 - 100) M_{\odot}$ $q = \frac{\mu}{M_{BH}} \qquad N_{cycles} \simeq 1/q \simeq 10^{5}$ → Study of the environment
 → Infer dark matter properties

dark matter halo

 \rightarrow precise measurement of source parameters

BACKGROUND SPACETIME: GEOMETRY CONTENT

Einstein Equations:

 $G^{(0)}_{\mu\nu} = 8 \pi T^{(0)env}_{\mu\nu}$

Primary Schwarzschild Black Hole

$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} = -a(r) dt^{2} + \frac{dr^{2}}{1 - 2m(r)/r} + r^{2} d\Omega^{2}$$

BACKGROUND SPACETIME: MATTER CONTENT

Einstein equations:

 $G^{(0)}_{\mu\nu} = 8 \pi T^{(0)env}_{\mu\nu}$

Dark Matter Halo (Hernquist Profile) Stress-energy tensor

 $\mathbf{T}_{\mu\nu}^{(\mathbf{0})\text{env}} = \text{diag}(-\rho(\mathbf{r}), \mathbf{0}, \mathbf{P}_{\mathbf{t}}(\mathbf{r}), \mathbf{P}_{\mathbf{t}}(\mathbf{r}))$

Density profile

$$p(r) = \frac{M_{H}(a_{0} + 2M_{BH})}{2\pi r (r + a_{0})^{3}} (1 - 4\frac{M_{BH}}{r})$$

BACKGROUND SPACETIME IN A SMALL EXPANSION IN MHALO

EXTREME MASS-RATIO INSPIRALS IN DARK MATTER HALOS

Secondary Stellar-Mass Compact Object moving along circular equatorial orbits

perturbation of the background spacetime

 $g_{\mu\nu} = g_{\mu\nu}^{(0)} + g_{\mu\nu}^{(1)} \qquad T_{\mu\nu}^{env} = T_{\mu\nu}^{(0)env} + T_{\mu\nu}^{(1)env}$ $G_{\mu\nu}^{(1)} = 8 \pi T_{\mu\nu}^{(1)env} + 8 \pi T_{\mu\nu}^{p}$

ADIABATIC ORBITAL EVOLUTION

Radial evolutionPhase evolution $\frac{dr}{dt} = -\dot{E} \frac{dr}{dE_p}$ $\frac{d\Phi}{dt} = \omega_p$ \dot{E} energy flux (GW emission) E_p particle orbital energy ω_p particle orbital angular frequency

fixed observation time $t \in (t_n, T)$

ENERGY FLUX COMPUTATION

Spherical symmetry of the background \longrightarrow decomposition of $g_{\mu\nu}$ and $T_{\mu\nu}$

into axial and polar modes I + m = odd I + m = even $\Rightarrow \dot{\mathsf{E}}^{\text{tot}} = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \mathsf{E}_{lm}^{axial} + \mathsf{E}_{lm}^{polar}$ $\dot{\mathsf{E}}_{\mathsf{Im}}^{\mathsf{polar}} = \lim_{\mathsf{r} \to \mathsf{r}_{+}} \frac{1}{32 \, \pi} \frac{(\mathsf{I}+2)!}{(\mathsf{I}-2)!} |\mathsf{K}(\mathsf{r})|^{2}$ $\frac{\mathrm{d} \Psi^{\mathrm{pol}}}{\Phi} - \hat{\alpha} \Psi^{\mathrm{pol}} = \mathbf{S}^{\mathrm{pol}}$ $\overline{\Psi^{\text{pol}}} = \{ \mathbf{K}(\mathbf{r}), \mathbf{H}_{0}(\mathbf{r}), \mathbf{H}_{1}(\mathbf{r}), \mathbf{W}(\mathbf{r}), \delta\rho(\mathbf{r}) \}$

SYSTEM CONFIGURATIONS

 $\mu = 50 \,\mathrm{M}_{\odot}$

 $M_{BH} = 10^6 M_{\odot}$

in vacuum

surrounded by three different halos: $C = (10^{-3}, 10^{-4}, 10^{-5})$

 \forall configuration:

 $M_{BH} = 10^6 M_{C}$

 $\mu = 10 \, \mathrm{M}_{\odot}$

➡ Detectability: - dephasing - faithfulness

 $\mu = 10 \,\mathrm{M}_{\odot}$

 $M_{\rm BH} = 10^5 M$

in a dark matter halo

 $\mu = 50 \,\mathrm{M}_{\odot}$

 $M_{BH} = 10^5 M$

FAITHFULNESS

 $\label{eq:h1} \begin{array}{l} h_1 = GW \text{ template of EMRI in vacuum} \\ h_2 = GW \text{ template of EMRI in} \\ \text{ dark matter} \end{array}$

WHAT COMES NEXT IN THE STORY?

G S

Generalizing to eccentric orbits (currently working on it!)

Performing a more quantitative analysis
Studying other dark matter profiles
Adding the spin to the primary black hole

Sara Gliorio [sara.gliorio@gssi.it]

BACK-UP SLIDES

Expansion for small $M_{\rm H}$

Exact solution:

a(r)=1

$$a(r) = 1 - \frac{2M_{BH}}{r} \exp(Y)$$

$$Y = -\pi\sqrt{M_{H}}/\xi + 2\sqrt{M_{H}}/\xi \arctan\frac{r + a_{0} - N_{H}}{\sqrt{M_{H}}}$$

$$\xi = 2a_0 - M_H + 4M_B$$

Expansion for small $M_{\rm H}$

First/second order comparison

	l=2 m=1	l=3 m=2	l=4 m=1	l=4 m=3	
$\mathcal{O}(M_{ m H})$	1.1784×10^{-6}	3.8461×10^{-7}	1.3005×10^{-12}	9.3385×10^{-8}	axial sector
${\cal O}(M_{ m H}^2)$	1.1784×10^{-6}	3.8461×10^{-7}	1.3005×10^{-12}	9.3385×10^{-8}	2
		- 10 es.			
	a sub-		and a second		
	l=2 m=2	l=3 m=1	l=3 m=3	l=4 m=2	l=4 m=4
$\mathcal{O}(M_{\mathrm{H}})$	$\begin{array}{c} l{=}2 \text{ m}{=}2 \\ \hline 2.2905 \times 10^{-4} \end{array}$	$l=3 m=1 \\ 3.1509 \times 10^{-9}$	$\begin{array}{c} l{=}3 \text{ m}{=}3 \\ \hline 3.6194 \times 10^{-5} \end{array}$	$\begin{array}{c} l{=}4 \text{ m}{=}2\\ 3.8573 \times 10^{-9} \end{array}$	$\frac{l=4 \text{ m}=4}{7.1152 \times 10^{-6}}$

polar sector

polar sector

Same compactness, but different values of M_H and a_0

	l=2 m=1	l=3 m=2	l=4 m=1	l=4 m=3	
$a_0 = 10^4$ $M_{\rm H} = 1$	1.1784×10^{-6}	3.8461×10^{-7}	1.3005×10^{-12}	9.3385×10^{-8}	axial sect
$a_0 = 10^5$ $M_{\rm H} = 10^5$	$0 1.1784 Imes 10^{-6}$	3.8461×10^{-7}	1.3005×10^{-12}	9.3385×10^{-8}	
	• •	1			tie -
	l=2 m=2	l=3 m=1	l=3 m=3	l=4 m=2	l=4 m=4
$a_0 = 10^4$ $M_{\rm H} = 1$	2.2905×10^{-4}	3.1509×10^{-9}	3.6194×10^{-5}	3.8573×10^{-9}	7.1152×10^{-6}
$a_0 = 10^5$ $M_{\rm H} = 10^5$	2.2905×10^{-4}	3.1554×10^{-9}	3.6201×10^{-5}	3.8419×10^{-9}	7.1158×10^{-6}

Dependence on the Compactness

Initial Radius and Flux Ratio

Stress-Energy Tensor of the environment

Einstein Cluster approach: Way of modeling a stationary BH surrounded by a collection of gravitation masses

Equivalent to define a anisotropic stressenergy tensor

 $\langle \mathsf{T}_{\mu\nu} \rangle = \frac{\mathsf{n}}{\mathsf{m}} \langle \mathsf{P}_{\mu} \mathsf{P}_{\nu} \rangle$

 $\mathsf{T}_{\mu\nu}^{(0)env} = \operatorname{diag}(-\rho(\mathbf{r}), \mathbf{0}, -\mathsf{P}_{t}(\mathbf{r}), -\mathsf{P}_{t}(\mathbf{r}))$

Other DM profiles $\rho(\mathbf{r}) = \rho(\mathbf{r}/\mathbf{a}_0)^{-\gamma} [\mathbf{1} + (\mathbf{r}/\mathbf{a}_0)^{\alpha}]^{(\gamma-\beta)/\alpha}$

 $\begin{array}{l} \alpha: \mbox{ dependence of the profile at large distances} \\ \beta: \mbox{ dependence of the profile at small distances} \\ \gamma: \mbox{ Sharpness of the transition} \end{array}$

$$\begin{split} & (\alpha,\beta,\gamma) = (1,4,1) \rightarrow \text{ Hernquist (closed analytical form)} \\ & (\alpha,\beta,\gamma) = (1,3,1) \rightarrow \text{ Navarro-Frenk-White} \\ & \rho(r) = \rho_e \exp\{-d_n[(r/r_e)^{1/n} - 1]\} \quad \text{Einasto} \end{split}$$

 $\rho(\mathbf{r})$ must vanish at $2\mathbf{R}_{s}$: $\rho(\mathbf{r}) \rightarrow \rho(\mathbf{r})(1-4\mathbf{M}_{BH}/\mathbf{r})$

Spikes in the dark matter density

FIG. 3: Effect of the adiabatic growth of the supermassive black hole at the center of the galaxy on a Hernquist dark matter profile. Shown are the results of the fully relativistic calculation, and the effects of dark matter annihilations. The dashed line (blue in color version) shows the non-relativistic approximation using the GS method.

Sadeghian et all. 2013