CHEMICALLY HOMOGENEOUS EVOLUTION: IMPACT ON STELLAR POPULATION & COMPACT BINARY MERGERS

Marco Dall'Amico

Università degli Studi di Padova

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

MASSIVE STARS: BETTER TOGETHER

From Marchant & Bodensteiner 2024

M. Dall'Amico

CHEMICALLY HOMOGENEOUS EVOLUTION

M. Dall'Amico

CHEMICALLY HOMOGENEOUS EVOLUTION

CHEMICALLY HOMOGENEOUS EVOLUTION EFFECTS ON

- Stellar population
- Compact binary systems

CHEMICALLY HOMOGENEOUS EVOLUTION EFFECTS ON

- Stellar population
- Compact binary systems

10^8 BINARY - **10^7** SINGLE SIMULATIONS WITH

- LOW METALLICITY $(Z \le 0.004)$
- LARGE ACCREATED MASS (>5% of initial mass)
- **MASSIVE STAR** (M>15 M⊙)

M. Dall'Amico

if

MODEL WITH

WR & PROGENITOR STAR (AT Z=0.001)

WR & PROGENITOR STAR (AT Z=0.001)

WR & PROGENITOR STAR (AT Z=0.001)

BINARY BLACK HOLES

BINARY BLACK HOLES

BBH MERGERS

BBH MERGERS

ORBITAL SEPARATION EVOLUTION (AT Z=0.004)

BBH FORMED THROUGH CHE BORN WITH LARGER ORBITAL SEPARATIONS

SUMMARY

+ **BINARY EVOLUTION**

+ CHEMICALLY HOMOGENEOUS EVOLUTION

= 1.MORE NUMEROUS WR

└→ More massive BHs

2.MORE MASSIVE WR

→ More luminous WRs from less massive progenitors

3.LESS BBH & BHNS MERGERS

CHE quenches BBH & BHNS merger formation

4.ASYMMETRIC BBH

BBH with Mass ratio 0.4-0.6

BH-NS MERGERS

BINARY - SINGLE POP SYNTH SIMULATIONS WITH

Iorio et al. 2023

- **SSE:** pre-computed stellar tracks interpolation
- **BSE:** analytic and semi-analytic prescriptions
- STELLARPARSEC stellar evolution codeTRACKS:(Bressan et al. 2012; Chen et al. 2015;
Costa et al. 2019,2021)
 - **CHE:** Accretion spin up as in Eldridge+2011

BBH MASS RATIO

COMPACT OBJECT BINARIES

			BBH			BHNS			BNS		
Z	name P _{CHE}		P _{cob}	Pmerg	P ^{CHE} merg	P _{cob}	Pmerg	P ^{CHE} merg	P _{cob}	Pmerg	P ^{CHE} merg
0.001	NoCHEzams	0	4.28	0.92	0	0.97	0.23	0	0.66	0.42	0
	NoCHEpreMS	0	4.28	0.92	0	0.97	0.24	0	0.66	0.41	0
	CHE10zams	14.8	5.17	0.32	22.63	5.76	0.06	19.99	0.17	0.05	0
	CHE10preMS	14.69	5.18	0.31	23.42	5.68	0.06	20.01	0.17	0.05	0
	CHE20zams	4.25	4.69	0.28	13.8	1.38	0.07	3.63	0.62	0.39	0
	CHE20preMS	4.29	4.7	0.28	14.36	1.39	0.07	3.7	0.62	0.39	0
0.004	NoCHEzams	0	3.98	0.59	0	0.94	0.18	0	0.61	0.32	0
	NoCHEpreMS	0	3.98	0.59	0	0.94	0.18	0	0.60	0.32	0
	CHE10zams	14.93	5.43	0.05	37.7	4.72	0.02	32.94	0.20	0.09	0
	CHE10preMS	14.31	5.44	0.05	39.15	4.57	0.02	32.66	0.20	0.10	0
	CHE20zams	5.85	4.86	0.04	12.96	1.67	0.02	12.3	0.45	0.22	0
	CHE20preMS	5.9	4.86	0.04	13.51	1.69	0.02	11.83	0.45	0.22	0

WR & RSG STATS

	Z=0.001		Z=0.004			Z=0.008		Z=0.02		Z=0.04		
	CHE	NoCHE	Sing	CHE	NoCHE	Sing	NoCHE	Sing	NoCHE	Sing	NoCHE	Sing
P _{WR}	9.5	3.6	0	12.2	7.0	1.9	8.7	4.6	10.7	8.6	12.6	12.2
P _{WRbin}	15.9	5.4		18.4	10.6		13.6		17.1		19.8	
P _{WRprim}	25.5	65.4		34.6	57.4		55.0		53.5		47.0	
P _{WRsec}	72.9	29.9		56.6	26.6		23.0		22.5		25.0	
P _{WRmerg}	1.6	4.7		8.8	16.0		22.0		24.0		28.0	
P _{WR-WR}	0.3	0.2		0.7	0.5		1.2		1.8		2.8	
P _{RSG}	13.5	14.7	27.5	14.4	15.5	29.2	16.7	29.6	17.3	15.6	19.3	39.2
P _{RSGbin}	23.7	25.6		25.4	26.5		28.7		29.8		33.6	
P _{RSGprim}	48.4	44.5		45.1	42.1		43.0		43.5		39.5	
P _{RSGsec}	20.4	26.2		18.3	22.9		21.6		22.7		26.6	
P _{RSGmerg}	31.2	29.3		36.6	35.0		35.4		33.0		33.9	
P _{RSG-RSG}	0.03	0.03		0.2	0.2		0.3		0.4		0.3	

WR & PROGENITOR STAR (AT Z=0.004)

