A Fisher matrix code for population analysis of gravitational-wave events

Viola De Renzis (University of Milano-Bicocca)

with: Francesco Iacovelli, Michele Mancarella, Davide Gerosa, Costantino Pacilio

Teongrav meeting Rome, September 16 v.derenzis@campus.unimib.it

Detection number

GWTC-2 (2020)

Binary masses $[M_{\odot}]$

Detection number

GWTC-2 (2020)

Binary masses $[M_{\odot}]$

Detection number

GWTC-3 (2022) ~90 events

GWTC-2 (2020)

Binary masses $[M_{\odot}]$

GWTC-3 (2022) ~90 events

GWTC-2 (2020)

 $[M_{\odot}]$ Binary masses

GWTC-3 (2022)

Detection number

- Lowest level:
 - What are the properties of **individual** GW sources?

Detection number

• Next level:

What are the properties of the **underlying population** of GW sources?

• Lowest level:

What are the properties of **individual** GW sources?

Detection number

• Next level:

What are the properties of the underlying population of GW sources?

• Ultimate goal: Figure out the formation pathways of compact binary systems

- how many formation channels?
- properties of each individual channel (common envelope, kicks...)
- merger rate for each channel
- many more open questions

- Lowest level:
 - What are the properties of individual GW sources?

Detection number

• Next level:

What are the properties of the underlying population of GW sources?

• Ultimate goal: Figure out the formation pathways of compact binary systems

- how many formation channels?
- properties of each individual channel (common envelope, kicks...)
- merger rate for each channel
- many more open questions

• Lowest level:

What are the properties of **individual** GW sources?

Hierarchical Bayesian inference

Detection number

• Next level:

What are the properties of the **underlying population** of GW sources?

• Lowest level:

What are the properties of **individual** GW sources?

 $p(\overrightarrow{\theta} \mid d) \propto \mathscr{L}(d \mid \overrightarrow{\theta}) \pi(\overrightarrow{\theta})$

 $\vec{\theta}$ = individual source parameters

Hierarchical Bayesian inference

Detection number

• Next level:

What are the properties of the underlying population of GW sources?

Population Single-event likelihood model L $((1)) \rightarrow$ $p(\{d_i\} \mid \lambda) = -$ **P**_{det} **Population Likelihood**

• Lowest level:

What are the properties of **individual** GW sources?

 $p(\overrightarrow{\theta} \mid d) \propto \mathscr{L}(d \mid \overrightarrow{\theta}) \pi(\overrightarrow{\theta})$

 $\vec{\theta} = \text{individual source parameters}$

Not all sources are equally easy to detect

Detection number

• Next level:

What are the properties of the underlying population of GW sources?

 $\begin{array}{ll} & \text{Single-event} & \text{Population} \\ & \text{likelihood} & \text{model} \end{array} \\ & p(\{d_i\} \mid \overrightarrow{\lambda}) = \frac{\int \mathscr{L}(d \mid \overrightarrow{\theta}) \ p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\text{det}}(\overrightarrow{\lambda})} \end{array}$ Population Likelihood

• Lowest level:

What are the properties of individual GW sources?

 $p(\overrightarrow{\theta} \mid d) \propto \mathscr{L}(d \mid \overrightarrow{\theta}) \pi(\overrightarrow{\theta})$

 $\vec{\theta}$ = individual source parameters

$$d\vec{\theta}$$

Selection effects $P_{det}(\overrightarrow{\lambda}) = \int P_{det}(\overrightarrow{\theta})p(\theta | \lambda)d\overrightarrow{\theta}$ \overrightarrow{V} Detection probability: $P_{det}(\overrightarrow{\theta}) = \int_{d > d_{th}} \mathscr{L}(d | \overrightarrow{\theta})dd$

Individual-event parameter estimation

O Bayesian inference codes (BILBY, lalsimulation, PyCBC, RIFT, DINGO...)

[Iacovelli et al, 2022] • Fisher codes (GWfast, GWbench, GWfish) [Borhanian, 2021] [Branchesi et al, 2023]

Population level parameter estimation

• Bayesian inference codes (GWpopulation, BILBY, deep learning codes, non-parametric models...)

O No fisher codes to make forecasts about the population properties that will be observed with 3G detectors

We are developing a user-friendly python code to estimate the parameters that characterize a population of GW events including selection effects

[Ashton et al, 2018] [Henshaw et al, 2022] [Dax et al, 2021]

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda})/P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} d\overrightarrow{\theta} \right]$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p_{\rm det}(\vec{\theta}) \right]$$

$$\equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}} \right)_{ij} + \left(\Gamma_{\text{II}} \right)_{ij} + \left(\Gamma_{\text{III}} \right)_{ij} + \left(\Gamma_{\text{IV}} \right)_{ij} + \left(\Gamma_{\text{V}} \right)_{ij} +$$

 $\vec{\theta} \mid \vec{\lambda} d \vec{\theta}$

 $\overrightarrow{\theta}$

 $d\overrightarrow{\theta}$

 $d\overrightarrow{\theta}$

 $p(\overrightarrow{\theta} \mid \overrightarrow{\lambda}) d\overrightarrow{\theta}$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda})/P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} d\overrightarrow{\theta} \right] d\overrightarrow{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} dt$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p_{\rm det}(\vec{\theta}) \right]$$

Population Fisher Matrix $(\Gamma_{\lambda})_{ij} \equiv N_{det} [(\Gamma_{I})_{ij} + (\Gamma_{II})_{ij} + (\Gamma_{IV})_{ij} + (\Gamma_{V})_{ij}]$

$d\overrightarrow{\theta}$

$\mathcal{D}(\theta \mid \lambda) d\theta$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda})/P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} d\overrightarrow{\theta} \right] d\overrightarrow{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} dt$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p_{\rm det}(\vec{\theta}) \right]$$

 $\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda})/P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} d\overrightarrow{\theta} \right] d\overrightarrow{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} dt$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p_{\rm det}(\vec{\theta}) \right]$$

$$\equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}} \right)_{ij} + \left(\Gamma_{\text{II}} \right)_{ij} + \left(\Gamma_{\text{III}} \right)_{ij} + \left(\Gamma_{\text{IV}} \right)_{ij} + \left(\Gamma_{\text{V}} \right)_{ij} +$$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda})/P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} d\overrightarrow{\theta} \right] d\overrightarrow{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} dt$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p_{\rm det}(\vec{\theta}) \right]$$

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda})/P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} d\overrightarrow{\theta} \right] d\overrightarrow{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} dt$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p_{\rm det}(\vec{\theta}) \right]$$

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]\right]$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln\left(p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})/P_{\rm det}(\overrightarrow{\lambda})\right)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\overrightarrow{\theta})}{P_{\rm det}(\overrightarrow{\lambda})} p(\overrightarrow{\theta} \mid \overrightarrow{\theta})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det\left(\Gamma + H\right)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\overrightarrow{\theta})}{P_{\rm det}(\overrightarrow{\lambda})} p(\overrightarrow{\theta} \mid \overrightarrow{\lambda}) d\overrightarrow{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} \mathrm{d}\overrightarrow{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} dt$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p_{\rm det}(\vec{\theta}) \right]$$

$$\equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}} \right)_{ij} + \left(\Gamma_{\text{II}} \right)_{ij} + \left(\Gamma_{\text{III}} \right)_{ij} + \left(\Gamma_{\text{IV}} \right)_{ij} + \left(\Gamma_{\text{V}} \right)_{ij} +$$

 $\vec{\theta} \mid \vec{\lambda} d \vec{\theta}$

Whatever functional form you like! (as long as it is differentiable)

 $d \overrightarrow{\theta}$

 $\mathcal{D}(\theta' \mid \lambda) \mathrm{d} \theta'$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln\left(p(\vec{\theta} \mid \vec{\lambda})/P_{\rm det}(\vec{\lambda})\right)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det\left(\Gamma + H\right)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\mathrm{det}}(\vec{\lambda})} \mathrm{d}\vec{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\frac{P_k \left(\Gamma + H\right)_{kl}^{-1}}{P_{\rm det}(\vec{\lambda})} D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta} \right]$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\frac{P_k \left(\Gamma + H\right)_{kl}^{-1} P_l}{P_{\rm det}(\vec{\lambda})} \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta})$$

Population Fisher Matrix $(\Gamma_{\lambda})_{ij} \equiv N_{det} [(\Gamma_{I})_{ij} + (\Gamma_{II})_{ij} + (\Gamma_{IV})_{ij} + (\Gamma_{V})_{ij}]$

with its first and second derivatives

$$P_{i} = \frac{\partial \ln p(\vec{\theta} \mid \vec{\lambda})}{\partial \theta^{i}}$$
$$H_{ij} = -\frac{\partial^{2} \ln p(\vec{\theta} \mid \vec{\lambda})}{\partial \theta^{i} \partial \theta^{j}}$$

 $(\overline{\theta} \mid \overline{\lambda}) d \overline{\theta}$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda}) P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda})$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\mathrm{det}}(\vec{\lambda})} C_{kl}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} P_l$$

Population Fisher Matrix $(\Gamma_{\lambda})_{ij} \equiv N_{det} [(\Gamma_{I})_{ij} + (\Gamma_{II})_{ij} + (\Gamma_{III})_{ij} + (\Gamma_{V})_{ij} + (\Gamma_{V})_{ij}]$

Population model: $p(\vec{\theta} \mid \vec{\lambda})$

Selection effects: $P_{det}(\vec{\lambda}) = \int P_{det}(\vec{\theta})p(\theta | \lambda)d\vec{\theta}$

$d\overrightarrow{\theta}$

$d\overrightarrow{\theta}$

$p(\theta \mid \lambda)$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda}) P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda})$$

$$\left(\Gamma_{\mathrm{III}}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} \mathrm{d}\overrightarrow{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} P_l$$

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]\right]$

 $p(\theta \mid \lambda)$

$P_{\text{det}}(\vec{\theta})$ = Heaviside function

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]\right]$

$$P_{\rm det}(\vec{\theta}) = \frac{1}{2} \operatorname{erfc} \frac{(\rho - \rho_{\rm th})}{\sqrt{2}\sigma}$$

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln(p(\vec{\theta} \mid \vec{\lambda}) P_{\rm det}(\vec{\lambda}))}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda})$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det(\Gamma + H)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda})$$

$$(\Gamma_{\rm III})_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[(\Gamma + H)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$$\left(\Gamma_{\rm IV}\right)_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$$\left(\Gamma_{\rm V}\right)_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k \left(\Gamma + H\right)_{kl}^{-1} P_l \right] \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda})$$

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]$

with its first derivative

$$D_l = \frac{\partial P_{\text{det}}(\vec{\theta})}{\partial \theta^i}$$

$$(\Gamma_{\rm I})_{ij} = -\int \frac{\partial^2 \ln\left(p(\vec{\theta} \mid \vec{\lambda}) P_{\rm det}(\vec{\lambda})\right)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$(\Gamma_{\rm II})_{ij} = \frac{1}{2} \int \frac{\partial^2 \ln \det\left(\Gamma + H\right)}{\partial \lambda^i \partial \lambda^j} \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$$

$$(\Gamma_{\rm III})_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[\left(\Gamma + H\right)_{kl}^{-1} \right] \Gamma_{kl} \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$$(\Gamma_{\rm IV})_{ij} = -\int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k (\Gamma + H)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$$(\Gamma_{\rm V})_{ij} = -\frac{1}{2} \int \frac{\partial^2}{\partial \lambda^i \partial \lambda^j} \left[P_k (\Gamma + H)_{kl}^{-1} \right] D_l \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$$

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]$

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]$ **Population Fisher Matrix** $\left(\Gamma_{\mathrm{I}}\right)_{ij} = -\left[\frac{\partial^{2}\ln\left(p(\overrightarrow{\theta} \mid \overrightarrow{\lambda}) P_{\mathrm{det}}(\overrightarrow{\lambda})\right)}{\partial\lambda^{i}\partial\lambda^{j}} \frac{P_{\mathrm{det}}(\overrightarrow{\theta})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})\right]$ Population model: $p(\vec{\theta} \mid \vec{\lambda})$ **Selection effects:** $\left(\Gamma_{\mathrm{II}}\right)_{ij} = \int B(\overrightarrow{\theta}) \frac{P_{\mathrm{det}}(\overrightarrow{\theta})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} p(\overrightarrow{\theta} \mid \overrightarrow{\lambda}) \mathrm{d}\overrightarrow{\theta}$ 2. $P_{\text{det}}(\vec{\lambda}) = \left[P_{\text{det}}(\vec{\theta}) p(\theta | \lambda) d\vec{\theta} \right]$ $\left(\Gamma_{\mathrm{III}}\right)_{ij} = \int C(\overrightarrow{\theta}) \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} \mathrm{d}\overrightarrow{\theta}$ 3. **Detection probability:** $P_{\text{det}}(\vec{\theta}) = \int_{d \geq d} p(d | \vec{\theta}) d\vec{\theta}$ $\left(\Gamma_{\rm IV}\right)_{ij} = \int D\left(\vec{\theta}\right) \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$ $\Gamma = Single event Fisher matrix$ $\left(\Gamma_{\rm V}\right)_{ij} = \int E(\vec{\theta}) \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$ with GWfast **Errors on the single-event parameters**

 $\overrightarrow{\theta}$ enter in the last four terms!

[Iacovelli et al, 2022] [Gair et al., 2023]

$\left(\Gamma_{\lambda}\right)_{ij} \equiv N_{\text{det}} \left[\left(\Gamma_{\text{I}}\right)_{ij} + \left(\Gamma_{\text{II}}\right)_{ij} + \left(\Gamma_{\text{III}}\right)_{ij} + \left(\Gamma_{\text{IV}}\right)_{ij} + \left(\Gamma_{\text{V}}\right)_{ij}\right]$ **Population Fisher Matrix** $\left(\Gamma_{\mathrm{I}}\right)_{ij} = -\left[\frac{\partial^{2}\ln\left(p(\overrightarrow{\theta} \mid \overrightarrow{\lambda}) P_{\mathrm{det}}(\overrightarrow{\lambda})\right)}{\partial\lambda^{i}\partial\lambda^{j}} \frac{P_{\mathrm{det}}(\overrightarrow{\theta})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})\right]$ Population model: $p(\vec{\theta} \mid \vec{\lambda})$ **Selection effects:** $\left(\Gamma_{\mathrm{II}}\right)_{ij} = \int B(\overrightarrow{\theta}) \frac{P_{\mathrm{det}}(\overrightarrow{\theta})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} p(\overrightarrow{\theta} \mid \overrightarrow{\lambda}) \mathrm{d}\overrightarrow{\theta}$ 2. $P_{\text{det}}(\vec{\lambda}) = \left[P_{\text{det}}(\vec{\theta}) p(\theta | \lambda) d\vec{\theta} \right]$ $\left(\Gamma_{\mathrm{III}}\right)_{ij} = \int C(\overrightarrow{\theta}) \frac{p(\overrightarrow{\theta} \mid \overrightarrow{\lambda})}{P_{\mathrm{det}}(\overrightarrow{\lambda})} \mathrm{d}\overrightarrow{\theta}$ 3. **Detection probability:** $P_{\text{det}}(\vec{\theta}) = \int_{d \geq d} p(d | \vec{\theta}) d\vec{\theta}$ $\left(\Gamma_{\rm IV}\right)_{ij} = \int D\left(\vec{\theta}\right) \frac{p(\vec{\theta} \mid \vec{\lambda})}{P_{\rm det}(\vec{\lambda})} d\vec{\theta}$ $\Gamma = Single event Fisher matrix$ $\left(\Gamma_{\rm V}\right)_{ij} = \int E(\vec{\theta}) \frac{P_{\rm det}(\vec{\theta})}{P_{\rm det}(\vec{\lambda})} p(\vec{\theta} \mid \vec{\lambda}) d\vec{\theta}$ with GWfast If the single-event errors are small,

Monte Carlo integration

We approximate the equation for $\Gamma_{\rm I}$, $\Gamma_{\rm II}$, $\Gamma_{\rm III}$, $\Gamma_{\rm V}$, $\Gamma_{\rm V}$ with Monte Carlo integrals

$$I(\lambda) = \int X(\theta, \lambda) p_{\text{draw}}(\theta) d\theta \simeq \frac{1}{N_{\text{draw}}} \sum_{i}^{N_{\text{draw}}} X(\theta_i, \lambda)$$

Mass distribution $p_{pop}(\theta | \lambda)$ = Power Law Plus Peak

3G forecasts

Mass distribution = Power Law Plus Peak

%Spin= Default distribution

※Detectors: ET,ET+2CE

Par

rameter	Description	Fiducial V
	Mass model: Power Law Plus Peak	
$lpha_m$	Spectral index for the power-law of the primary mass distribution.	3.4
β_q	Spectral index for the power-law of the mass ratio distribution.	1.1
$m_{ m min}$	Minimum mass of the power-law component of the primary mass distribution.	9.1 M
$m_{ m max}$	Maximum mass of the power-law component of the primary mass distribution.	$87M_{\odot}$
$\lambda_{ extsf{p}}$	Fraction of binary BHs in the Gaussian component.	0.039
μ_m	Mean of the Gaussian component in the primary mass distribution.	34
σ_m	Width of the Gaussian component in the primary mass distribution.	
σ_l	Width of mass smoothing at the lower end of the mass distribution.	4.0
σ_h	Width of mass smoothing at the upper end of the mass distribution.	0.5

3G forecasts

※Mass distribution = Power Law Plus Peak **※Redshift distribution = Madau Dickinson**※Spin= Default distribution

※Detectors: ET+2CE
※SNR threshold=12

Parameter $lpha_{
m z}$ $eta_{
m z}$ $eta_{
m z}$

3G forecasts

《 Mass distribution = Power Law Plus Peak **Spin= Default distribution**

※Detectors: ET, ET+2CE **%**SNR threshold=12

 σ_t

Shape parameter of the Beta distribution of the spin magnitudes.	1.6	
Shape parameter of the Beta distribution of the spin magnitudes.	4.12	
Mixing fraction of mergers from the truncated Gaussian component for		
spin orientations.		

1.5Width of the truncated Gaussian component for spin orientations, determining the typical spin misalignment.

Astrophysical implications

[LVK, 2022]

What's the formation, evolution, and distribution of BBHs in the universe?

- Lower mass end at ~ $10M_{\odot} \rightarrow$ Field binaries 貒
 - $m_{\rm max} \simeq 90 M_{\odot} \rightarrow$ Hierarchical mergers in dense environments
 - Peak at ~34 M_{\odot} \rightarrow Support for PISN mass gap between $\sim [40, 60] M_{\odot}$

Low (but non-zero) spin magnitudes 貒 Mixture of aligned and misaligned spins 貒 Weak precession 貒

Mix of BBH formation channels (dynamical and isolated)

Forecasts for the mass and cut off hyperparameters with 3G detectors

- No big difference between ET and ET+2CE 《》 (the scale of the problem is the number of detections!)
- α_m and μ_m are the best measured parameters 貒
- σ_h is the worst measured **※**

Relative errors after 10 years of observation

σ_λ/λ	\mathbf{ET}	$\mathbf{ET} + \mathbf{2CE}$
α_m	$6.7\cdot 10^{-4}$	$6.0\cdot10^{-4}$
eta_q	$3.3\cdot 10^{-3}$	$3.1\cdot 10^{-3}$
$m_{ m min}$	$1.3\cdot 10^{-3}$	$1.0\cdot10^{-3}$
$m_{ m max}$	$2.0\cdot 10^{-3}$	$2.0\cdot 10^{-3}$
$\lambda_{ ext{peak}}$	$5.5\cdot 10^{-3}$	$4.7\cdot 10^{-3}$
σ_l	$3.1\cdot 10^{-3}$	$2.3\cdot 10^{-3}$
σ_h	$1.5\cdot 10^{-2}$	$1.5\cdot 10^{-2}$
μ_m	$4.4\cdot 10^{-4}$	$3.7\cdot10^{-4}$
σ_m	$4.0\cdot 10^{-3}$	$2.7\cdot 10^{-3}$

Relative errors after 10 years of observation

σ_λ/λ	\mathbf{ET}	$\mathbf{ET}\mathbf{+}\mathbf{2CE}$
$lpha_m$	$6.7\cdot10^{-4}$	$6.0\cdot10^{-4}$
eta_q	$3.3\cdot 10^{-3}$	$3.1\cdot 10^{-3}$
$m_{ m min}$	$1.3\cdot 10^{-3}$	$1.0\cdot 10^{-3}$
$m_{ m max}$	$2.0\cdot 10^{-3}$	$2.0\cdot 10^{-3}$
$\lambda_{ m peak}$	$5.5\cdot 10^{-3}$	$4.7\cdot 10^{-3}$
σ_l	$3.1\cdot 10^{-3}$	$2.3\cdot 10^{-3}$
σ_h	$1.5\cdot 10^{-2}$	$1.5\cdot 10^{-2}$
μ_m	$4.4\cdot 10^{-4}$	$3.7\cdot 10^{-4}$
σ_m	$4.0\cdot 10^{-3}$	$2.7\cdot 10^{-3}$

Variation of $m_{\rm max}$ vs $T_{\rm obs}$ = 6 months

Variation of $m_{\rm max}$ vs $T_{\rm obs} = 12$ months

Variation of $m_{\rm max}$ vs $T_{\rm obs} = 5$ years

Variation of $m_{\rm max}$ vs $T_{\rm obs} = 10$ years

Conclusions

that enable the use of parametric (differentiable) models. Our forecast show the outstanding constraining power of 3G detectors □ After just a few years of observation, these detectors are projected to constrain hyperparameters with percent-level accuracy

Future work

- Exploring the correlations between parameters
- Adding cosmology
- Perform hierarchical test of GR
- □ Other ideas?

- □ We developed a (not yet public) Fisher code for population analysis with selection effects

Back up slides

Power law of SMBHs with 1 parameter and 1 hyperparameter

$$p(M_1 \mid \alpha) = \frac{\alpha}{M_{\text{max}}^{\alpha} - M_{\text{min}}^{\alpha}} M_1^{\alpha - 1}$$

★ 1 parameter $\theta = M_1$ \star 1 hyperparameter $\lambda = \alpha$ with $\alpha_{true} \approx 0$ $\star M_{\rm min} = 10^4 M_{\odot}$ $\star M_{\rm max} = 10^7 M_{\odot}$

★
$$d_{th} = 5 \times 10^5 M_{\odot}$$

★ $\Gamma = \frac{1}{\sigma^2}$ with $\sigma = 0.1$
★ $N_{obs} = 100$
★ $N_{det} = 39$

Power law of SMBHs with 1 parameter and 1 hyperparameter

$$p(M_1 \mid \alpha) = \frac{\alpha}{M_{\text{max}}^{\alpha} - M_{\text{min}}^{\alpha}} M_1^{\alpha - 1}$$

★ 1 parameter $\theta = M_1$ \star 1 hyperparameter $\lambda = \alpha$ with $\alpha_{
m true} pprox 0$ $\star M_{\rm min} = 10^4 M_{\odot}$ $\star M_{\rm max} = 10^7 M_{\odot}$

★
$$d_{th} = 5 \times 10^5 M_{\odot}$$

★ $\Gamma = \frac{1}{\sigma^2}$ with $\sigma = 0.1$
★ $N_{obs} = 100$
★ $N_{det} = 39$

Fisher predictions were validated with an MCMC analysis for the same data set

Power law of SMBHs with 1 parameter and 1 hyperparameter

$$p(M_1 \mid \alpha) = \frac{\alpha}{M_{\text{max}}^{\alpha} - M_{\text{min}}^{\alpha}} M_1^{\alpha - 1}$$

★ 1 parameter $\theta = M_1$ \star 1 hyperparameter $\lambda = \alpha$ with $\alpha_{\rm true} \approx 0$ $\star M_{\rm min} = 10^4 M_{\odot}$ $\star M_{\rm max} = 10^7 M_{\odot}$

★
$$d_{th} = 5 \times 10^5 M_{\odot}$$

★ $\Gamma = \frac{1}{\sigma^2}$ with $\sigma = 0.1$
★ $N_{obs} = 100$
★ $N_{det} = 39$

Power Law (PL) mass function with smoothing

$$p(M_1 \mid \overline{\lambda}) \propto M_1^{-\alpha} S(M_1, M_{\min}, \sigma_l, M_{\max}, \sigma_h)$$

 $p(M_2 | M_1, \overrightarrow{\lambda}) \propto M_2^\beta S(M_2, M_{\min}, \sigma_l, M_{\max}, \sigma_h)$

6 hyperparameter $\overrightarrow{\lambda}$:

- α : Spectral index for the PL of the primary mass distribution ($\alpha_{true} = 0.75$)
- β : Spectral index for the PL of the mass ratio distribution ($\beta_{true} = 0.1$)
- $M_{\rm max}$, $M_{\rm min}$: Maximum and minimum mass of the PL component of the primary mass distribution
- σ_h , σ_l : Width of the smoothing component at the upper and lower edge of the mass distribution

O4 sentivity curve IMRPhenomHM waveform model

 $\rho_{th=20}$

PowerLaw mass function with smoothing

Population model with 2 parameters and 2 hyperparameters

$$p(M_1 \mid \alpha) = \frac{\alpha}{M_{\text{max}}^{\alpha} - M_{\text{min}}^{\alpha}} M_1^{\alpha - 1}$$

$$p(M_2 | \beta, M_1) \sim \left(\frac{M_2}{M_1}\right)^{\mu}$$

★ 2 parameters $\vec{\theta} = \{M_1, M_2\}$ ★ 2 hyperparameters $\overrightarrow{\lambda} = \{\alpha, \beta\}$ with $\alpha_{true} \approx 0$ and $\beta_{true} \approx 1.1$ (Spectral indexes for the PL of the primary (mass ratio) distributions) \star Ndet=39

Population model with 1 parameter and 1 hyperparameter

$$p(M_1 \mid \alpha) = \frac{\alpha}{M_{\text{max}}^{\alpha} - M_{\text{min}}^{\alpha}} M_1^{\alpha - 1}$$

★ 1 parameter $\theta = M_1$ \star 1 hyperparameter $\lambda = \alpha$ with $\alpha_{\rm true} \approx 0$ $\star M_{\rm min} = 10^4 M_{\odot}$ $\star M_{\rm max} = 10^7 M_{\odot}$

★
$$d_{th} = 5 \times 10^5 M_{\odot}$$

★ $\Gamma = \frac{1}{\sigma^2}$ with $\sigma = 0.1$
★ $N_{obs} = 100$
★ $N_{det} = 39$

Population model with 1 parameter and 1 hyperparameter

$$p(M_1 \mid \alpha) = \frac{\alpha}{M_{\text{max}}^{\alpha} - M_{\text{min}}^{\alpha}} M_1^{\alpha - 1}$$

★ 1 parameter $\theta = M_1$ ★ 1 hyperparameter $\lambda = \alpha$ with $\alpha_{true} \approx 0$ $\star M_{\rm min} = 10^4 M_{\odot}$ $\star M_{\rm max} = 10^7 M_{\odot}$

★
$$d_{th} = 5 \times 10^5 M_{\odot}$$

★ $\Gamma = \frac{1}{\sigma^2}$ with $\sigma = 0.1$
★ $N_{obs} = 100$
★ $N_{det} = 39$

$$\Gamma_{\lambda} = 29.35 \rightarrow \Delta \alpha_{\text{tot}} = \sqrt{\left(\Gamma_{\lambda} N_{\text{det}}\right)^{-1}} \approx 0.18$$

$$\Gamma_{\text{I}} = 29.36 \rightarrow \Delta \alpha_{\text{I}} = \sqrt{\left(\Gamma_{\text{I}} N_{\text{det}}\right)^{-1}} \approx 0.18$$

$$\Gamma_{\text{II}} + \Gamma_{\text{III}} + \Gamma_{\text{IV}} + \Gamma_{\text{V}} \approx 10^{-13}$$

Population model with 2 parameter and 2 hyperparameter

 \star Ndet=39

$$\Delta \alpha_{\text{tot}} = \sqrt{\left(\Gamma_{\lambda} N_{\text{det}}\right)^{-1}} \approx 0.39$$
$$\Delta \alpha_{\text{I}} = \sqrt{\left(\Gamma_{\text{I}} N_{\text{det}}\right)^{-1}} \approx 0.23$$

★ 2 parameter $\overrightarrow{\theta} = \{M_1, M_2\}$ ★ 2 hyperparameter $\overrightarrow{\lambda} = \{\alpha, \beta\}$ with $\alpha_{true} \approx 0$ and $\beta_{true} \approx 1.1$

$$\Delta \beta_{\text{tot}} = \sqrt{\left(\Gamma_{\lambda} N_{\text{det}}\right)^{-1}} \approx 0.31$$
$$\Delta \beta_{\text{I}} = \sqrt{\left(\Gamma_{\text{I}} N_{\text{det}}\right)^{-1}} \approx 0.18$$

