Andrea Cozzumbo Riccardo Murgia Gor Oganesyan Marica Branchesi

Model-independent cosmology with Bright Sirens

1st TEONGRAV workshop - September 17- Rome

LNGS

Andrea Cozzumbo

in collaboration with

Ulyana DupletsaRodrigo CalderónRiccardo MurgiaBiswajit BanerjeeGor OganesyanMarica Branchesi

1st Teongrav metting - September 17

$$H(z) = H_0 \sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{r,0}(1+z)^4 + \Omega_{k,0}(1+z)^2 + \Omega_{\text{DE},0} \exp\left[3\int_0^z \frac{1+w_{\text{DE}}(z')}{1+z'}dz'\right]}$$

$$w_{\rm DE}(z) = \frac{P_{\rm DE}(z)}{\rho_{\rm DE}(z)}$$

Warm up

 $w_{\rm DE}(z) = \frac{P_{\rm DE}(z)}{\rho_{\rm DE}(z)}$

1st TEONGRAV metting - September 17

$H(z) = H_0 \sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{r,0}(1+z)^4 + \Omega_{k,0}(1+z)^2 + \Omega_{\text{DE},0} f_{\text{DE}}(z)}$

 $d_{L}(z) = c (1 + z) \int_{0}^{\infty} \frac{dz'}{H(z')}$

We want to trace the Hubble parameter H(z)

Demianski+ 2020

G S Andrea Cozzumbo

SNIa (Cepheids) GRBs (SNIa) $OSOs (F_X - F_{UV})$

1st TEONGRAV metting - September 17

3 / 20

 $\tilde{h}_{+}(f) \propto \frac{\mathcal{M}^{3/6}}{2 \, d_{I}} f^{-7/6} \, e^{i\phi(\mathcal{M},f)} \big(1 + \cos^{2}(\iota)\big)$

 $\tilde{h}_{\mathsf{X}}(f) \propto \frac{\mathcal{M}^{5/6}}{d_{I}} f^{-7/6} e^{i\phi(\mathcal{M},f) + i\pi/2} \cos(i)$

1st TEONGRAV metting - September 17

self-calibrated measure of distance

BNS are associated to GW and to the burst of γ -rays ------> Multi-messenger astrophysics

This give us a $\Delta z \sim 0$

1st TEONGRAV metting - September 17

1st TEONGRAV metting - September 17

1st TEONGRAV metting - September 17

Cozzumbo+, in prep.

- Fermi-GBM & Swift-BAT/UVOT/XRT
- Merger-driven GRB events
- $\Delta z \leq 7\%$

If Einstein Telescope existed during the Swift and Fermi era, what new insights into cosmology would we have today?

Dupletsa+, 2024

A PRIORS

GW posteriors

 $\log \mathscr{L}(\theta) \propto \sum_{i=1}^{i=\text{events}} - \frac{(d_L^{\text{th}}(\theta) - d_L^{\text{obs},i})^2}{(d_L^{\text{th}}(\theta) - d_L^{\text{obs},i})^2}$ $2\sigma_{d_I,i}^2$

• We generate mock joint GW-GRB data assuming 2 different cosmologies

ΛCDM Planck18

• We fit them with a parametric and a non-parametric approach with various observational configurations

• We compare the performances

PEDE Planck18, eBOSS, Pantheon+

Li and Shafieloo, 2019

"Tantalizing suggestion" of dynamical DE

DESI collaboration, Adame+, 2024

$GP \rightarrow Gaussian Process$

 $GP \sim \mathcal{N}(\mu, k)$

$$h^{2}(z) = \frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m,0} (1+z)^{3} + (1 - \Omega_{m,0}) f_{\text{DE}}(z)$$

$$f_{\text{DE}}(z) \sim GP(\bar{f}_{\text{DE}} = 1, k(\sigma_f, l_f))$$

$$k(\sigma_f, l_f) = \sigma_f^2 e^{-\frac{(x-x')^2}{2 l_f^2}}$$

Approximating true function with more data

Injected

ACDM Planck18

Parametric approach

Fit

ΛCDM

Andrea Cozzumbo

Fit

CPL

$$h^{2}(z) = \frac{H^{2}(z)}{H_{0}^{2}} = \Omega_{m,0} (1+z)^{3} + (1-\Omega_{m,0}) f_{\text{DE}}(z)$$

$$w(z)^{\text{CPL}} = w_0 + w_a \frac{z}{1+z}$$

$$f_{\rm DE}(z) = (1+z)^{3(1+w_0+w_a)} \exp\left[\frac{-3w_a z}{1+z}\right]$$

Li and Shafieloo, 2019

Cozzumbo+, in prep.

1st TEONGRAV metting - September 17

Andrea Cozzumbo

G S

- We compare parametric and non-parametric approaches, underlining the **biases incurring** when choosing the wrong fitting model.
 - The non-parametric reconstruction is a factor ~ 1.5 better than the parametric one.
- We show the potential of a model-independent reconstruction for **Einstein Telescope and** next generation cosmological probes.
 - With less than 40 GRBs we will be able to achieve unprecendent precision on H_0 and $\Omega_{\rm m}$ and accurately reconstruct the DE density evolution.

Conclusions

We compare different catalogs of GRBs and configuration of 3G GW detectors to understand the future prospects of cosmological constraints with Bright Sirens

Standard candles

Related to absolute magnitude (M)

Measured

 $m - M = \mu = 5 \log_{10}$ 1Mpc

Systematics

