Stars & Black Holes Encounters in Young Star Clusters

Sara Rastello In coll. with : Giuliano Iorio, Long Wang, Mark Gieles

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

1st TEONGRAV workshop, La Sapienza, September 19th 2024

beatriu depinós

Tidal Disruption Events (Macro-TDEs)

A star orbiting around a SMBH is disrupted during the first pericenter passage once the tidal forces of the SMBH exceed the self-gravity of the star

Hills 1975, Rees 1988

$$R_{\rm t} = R_* \left(\frac{M_{\rm BH}}{M_*}\right)^{1/3} \approx 7 \times 10^{12} \left(\frac{R_*}{R_\odot}\right) \left(\frac{M_*}{M_\odot}\right)^{-1/3} \left(\frac{M_{\rm BH}}{10^6 M_\odot}\right)^{1/3} \,\mathrm{cm}$$

1st TEONGRAV workshop

Kobayashi 2004 Komossa 2015

Wever & Ryu, 2023

TDEs as Multi-Messenger Sources I

Electro Magnetic (EM) emission

1st TEONGRAV workshop

#SMBHs

TDEs as Multi-Messenger Sources II

Gravitational wave (GW) signals

Guillochon et al. 2009; Stone et al. 2013; Toscani et al., 2019,2022

1st TEONGRAV workshop

#SMBHs

the LISA band

micro-TDEs (µ-TDEs)

A star is destroyed in a close encounter with a compact object (CO) as stellar mass BH, NS or WD

Perets et al., 2016

Occur in dense star clusters where dynamical encounters between stars and COs are frequent

Rastello et al., 2019; Kremer et al., 2019,2021,2023; Ryu et al., 2022,2023a,c,d; Vynatheya et al., 2024; Xin et al., 2024

1st TEONGRAV workshop

Hills 1975;

Rees 1988

 $M_{\rm BH}$

YSCs models: SCs prop.

- $5e4 < M_{SC} (M_{\odot}) < 5e5$
- King (1966) Density profile ($r_h \& \rho$) with limepy lib. (Gieles & Zocchi 2015)
- Z = 0.0002 0.02
- MW2014 tidal field (Galpy, Bovy 2014)
- YSCs on a Sun-like circular orbit
- BSE as in PeTar (*Banerjee et al. 2020*)
- Delayed SN model

1st TEONGRAV workshop

Sara Rastello

How can we model μ -TDEs in SCs?

1. Close interactions between single stars and single COs

3. Stars destroyed when the companion CO-progenitor receives a natal kick

1st TEONGRAV workshop

$$R_{\rm t} = R_* \left(\frac{M_{\rm BH}}{M_*}\right)^{1/3}$$

- 2. Close encounters involving binaries
- i.e. Star-Star+ CO, CO-CO+Star, Star-CO + star, Star-CO + CO

Perets et al., 2016; Michaely et al., 2016; Hirai & Podsiadlowski 2022;

Stellar disruptions : all candidates*

* Satisfy the disruption condition $r_p \leq r_t$

$$R_{\rm p} \leq R_{\rm t} = R_{*} \left(\frac{M_{\rm BH}}{M_{*}}\right)^{1/3}$$

55 % or. *t* <100 *Myr* 45 % ex. t >100 Myr

 $r_{\rm t}$

r_p

 $\ \beta = \frac{r_{\rm t}}{-}$

1st TEONGRAV workshop

Stellar disruptions : eccentricity

1st TEONGRAV workshop

Stellar disruptions : BH natal kick

1st TEONGRAV workshop

Stellar disruptions : an example of a triple

1st TEONGRAV workshop

Sara Rastello

Implications: Multi-Messenger Astronomy I

EM: ~Fast Blue Optical Transients (FBOT)

LSST exp. 2025

ZTF ongoing

ULTRASAT exp. 2026

Optical transients UV transients

Detection rate estimate: $10-10^5 \text{ yr}^{-1}$ (Rubin), $1 - 50 \text{ yr}^{-1}$ (ZTF), and $0.3-10^3$ yr⁻¹ (ULTRASAT)

Kremer et al., 2023

Not yet confirmed

Implications: Multi-Messenger Astronomy II

GW: Burst emitted when the star is torn apart

 10^{-17} 10^{-19} LISA Strain cteristic 10^{-21} 1 Mpc Chara 10⁻²³ 16 Mpc DECIGO 10^{-25} **M**BH Z =]r_t/r_p 10^{-27} 10^{-4} 10^{-2} Frequency [Hz]

Sensitivity Curves: Amaro-Seoane et al., 2017; Sato et al., 2017; Abbott et al., 2020a; Maggiore et al., 2021; Ng et al., 2021

 $m_{BH} = 5-100 M_{\odot}$

Take home message

micro-TDEs involve a large variety of configurations (BCOs+star, binary stars+COs etc)

Timely need for a catalogue of template of micro-TDEs waveforms in preparation for next GW data

Macro-micro TDEs are promising multi-messenger sources expected to be detected soon (EM+GW)

SCHOOL

Gravitational Waves in Astrophysics: From Theory to Observations

November 18-22, 2024

Invited Courses

Gravitational Waves Data Analysis

Tomás Andrade Universitat de Barcelona, Spain Macarena Lagos Universidad Andrés Bello, Chile

Gravitational Wave Ringdown

Lam Hui Columbia University, USA

Binary Stellar Evolution and Star Clusters

Giuliano Iorio Universitat de Barcelona, Spain Sara Rastello Universitat de Barcelona, Spain

Organizing Committee

Hanne Van Den Bosch CMM – Universidad de Chile

Paola Rioseco CMM – Universidad de Chile

Tomás Andrade Universitat de Barcelona, Spain

Center for Mathematical Modeling Universidad de Chile Beauchef 851 Santiago – Chile

Macarena Lagos Universidad Andrés Bello, Chile

. Celeste Artale niversidad Andrés Bello, Chile

Know more / Apply

https://go.cmm.uchile.cl/waves2024

Further infomation: waves@cmm.uchile.cl

GW SCHOOL

Center for Mathematical Modeling (CMM), Universidad de Chile, from Monday, November 18 to Friday, November 22, 2024.

https://eventos.cmm.uchile.cl/waves2024/

Apply / Register

Apply now to participate in the School if you are a master's or doctoral student, or register to attend as a postdoc, researcher, or other professional.

The registration deadline is **September 22nd**, with results announced during the second week of October.

Radius vs Mass: Macro vs micro-TDEs

What about Stars & NS ?

Isolated binaries

Rate in the local Universe:

- 10 Gpc⁻³ yr⁻¹ in GCs (*Perets et al. 2016; Kremer et al. 2019d*); ightarrow
- ightarrow
- 1-10 Gpc⁻³ yr⁻¹ in NSCs (*Fragione et al. 2020*)

θХ synopt astronomical

Kremer et al., 2023

Environment	Intrinsic rate $(Gnc^{-3}vr^{-1})$		
(1)	(Opc yr) (2)		
Globular clusters	~10 (Perets et al. 2016; Kremer et al. 2019b)		
Young massive clusters	~100 (Kremer et al. 2021)		

µ-TDEs rate & detectability

20-200 Gpc⁻³ yr⁻¹ in YSCs & OCs (*Rastello et al., 2019; Kremer et al., 2021*)

LSST p. 2025		owing)			ULTRASA exp. 2026
S	urvey	AR AR VERA C. RUBIN O B S E R V A T O R Y 12000 10 follower Chreekgaarden (2), EAS Anthrenewengefeltel 8 che segul	Optical trans	ULTRASA SKYLIGHT TO SPACE	
	s (3)	Rubin (g-band) (yr ^{-1}) (4)	ZTF (g-band) (yr ⁻¹) (5)	ULTRASAT (NUV) (yr^{-1}) (6)	UV transient
l	0.2 0.5 0.8	6.8×10^{3} 50 0.9	4.3 0.1 0.004	133 1.2 0.03	
	0.2 0.5 0.8	6.8×10^4 490 9.1	53.9 1.1 0.9	1.3×10^{3} 12 0.3	

7TE ongoing

Detection rate estimate: 10–105 yr⁻¹ (Rubin), 1 – 50 yr⁻¹ (ZTF), and 0.3–10³ yr⁻¹ (ULTRASAT)

1) GW burst from BH-Star

Estimate of the GW strain emitted by the source derived from quadrupole approximation to the Einstein field equations *Toscani et al.*, 2021, 2022

 $h pprox rac{1}{d} rac{4G}{c^2} rac{E_{
m kin}}{c^2}$ d= distance from Earth $E_{\rm kin} = M_* \frac{GM_{\rm h}}{r_{\rm p}}$ kinetic energy

The **GW strain** is thus:

$$h \approx \beta \times \frac{r_{\rm s} r_{\rm s*}}{r_{\rm t} d}$$
$$\approx \beta \times 2 \times 10^{-22} \left(\frac{M_*}{M_{\odot}}\right)^{4/3} \left(\frac{M_{\rm h}}{10^6 \,{\rm M_{\odot}}}\right)^{2/3}$$
$$\times \left(\frac{R_*}{R_{\odot}}\right)^{-1} \left(\frac{d}{16 \,{\rm Mpc}}\right)^{-1},$$

The dependence on M*, R* and M• indicates that more compact stars (such as WDs) will produce stronger GW signals.

For $\beta = 1$ and a Sun-like star disrupted by a 106 M $_{\odot}$ static BH at \approx 16 Mpc from us, $h \approx 10-22$ and f $\approx 10-4$ Hz

The associated **frequency** is thus:

$$f \approx \frac{\beta^{3/2}}{2\pi} \left(\frac{GM_{\rm h}}{r_{\rm t}^3}\right)^{1/2}$$
$$\approx \beta^{3/2} \times 10^{-4} \,\mathrm{Hz} \times \left(\frac{M_*}{M_{\odot}}\right)^{1/2} \left(\frac{R_*}{R_{\odot}}\right)^{-3/2}$$

