Wolf-Rayet –compact object binaries: the road to gravitational wave mergers

Erika Korb

University of Padova - University of Heidelberg

Main Collaborators:

Michela Mapelli, Giuliano Iorio, Guglielmo Costa + the DEMOBLACK group

Could WR-COs be the progenitors of GW-merging BCOs?

Erika Korb

Wolf -Rayet

Black hole / Neutron star

Crowther+2010, Belczynski+2013, Esposito+2013, 2015 Liu+2013, Maccarone+2014, Laycock+2015, Koljonen+2017, Binder+2021, Veledina+2024

Erika Korb

Wolf -Rayet

Black hole / Neutron star

WR: BH/NS progenitorWR: proxy of mass transfer?

BH/NS already present

Crowther+2010, Belczynski+2013, Esposito+2013, 2015 Liu+2013, Maccarone+2014, Laycock+2015, Koljonen+2017, Binder+2021, Veledina+2024

Erika Korb

Black hole / Neutron star

WR: BH/NS progenitorWR: proxy of mass transfer?

- BH/NS already present
- X Mass measurement: is a BH or a NS?

Crowther+2010, Belczynski+2013, Esposito+2013, 2015 Liu+2013, Maccarone+2014, Laycock+2015, Koljonen+2017, Binder+2021, Veledina+2024

The method

Population
synthesis codeParameter exploration
(96 combinations)

The results

Could WR-COs be the progenitors of GW-merging BCOs?

Wolf-Rayet – compact object binaries: the road to gravitational wave mergers

Im

time

Erika Korb

Wolf-Rayet - compact object binaries: the road to gravitational wave mergers

time

Wolf-Rayet - compact object binaries: the road to gravitational wave mergers

time

~ 80 - 90 %

~ 80 - 90 %

Erika Korb

The results: do most WR-COs produce BCOs?

Erika Korb

Wolf-Rayet – compact object binaries: the road to gravitational wave mergers

ime

The results: do most WR-COs produce BCOs? Not really...

Erika Korb

Wolf-Rayet – compact object binaries: the road to gravitational wave mergers

ime

Erika Korb

T

The results: WR-CO properties

The results: WR-CO properties

The results: Cyg X-3 candidates

- the only WR-CO candidate in the Milky Way
- proposed as BCO progenitor
- probably hosts a BH

Esposito+2015

Belczynski+2013

Zdziarski+2013

 P = 4.8 hours
 Singh+2002

 $M_{WR} = 8 - 14 M_{\odot}$ Koljonen & Maccarone 2017

 $M_{CO} < 10 M_{\odot}$ Koljonen & Maccarone 2017

Erika Korb

Erika Korb

The results: Cyg X-3 candidates

- not a frequent WR-CO configuration (< 1/ 1 000, most optimistic)
- more likely BCO progenitors with respect to WR–COs (that are ~5% at Z_{\odot})

The results: Cyg X-3 candidates

- not a frequent WR-CO configuration (< 1/ 1 000, most optimistic)
- more likely BCO progenitors with respect to WR–COs (that are ~5% at Z_{\odot})

The conclusions

Most BCOs evolve from WR–COs ... but few WR–COs become BCOs

Erika Korb

The conclusions

Most BCOs evolve from WR–COs ... but few WR–COs become BCOs

Parameter exploration

The conclusions

WR-COs: the key BCO progenitors

WR-COs: the key BCO progenitors

Cyg X-3: a promising BCO progenitor

Cyg X-3: changing the CCSN model

The 7 WR–CO candidates

Host galaxy	Name	$M_{\rm BH}$	$M_{\rm WR}$	P	$t_{\rm GW}$	Ζ	d
		$[M_{\odot}]$	$[M_{\odot}]$	[hours]	[Gyr]	$[Z_{\odot}]$	[Mpc]
Milky Way	Cyg X-3	3-10 $^{\rm a}$	8-14 ^a	4.8 ^b	0.02	0.92	0.00741
IC 10	IC10 X-1	_ c	17-35 $^{\rm d}$	$34.9 \ ^{\rm e}$	3.5	0.22	0.70
NGC 300	NGC300 X-1	13-21 $^{\rm f}$	15-26 $^{\rm g}$	$32.8^{\rm \ f}$	2.9	0.19	2.02
NGC 253	CXOU J004732.0-251722.1	-	-	14.5 $^{\rm h}$	0.3	0.24	3.0
Circinus	CG X-1	-	-	7.2 $^{\rm i}$	0.05	0.10	4.2
M101	M101 ULX-1	8-46 $^{\rm j}$	17-19 $^{\rm j}$	$196.8 \ ^{\rm j}$	348	0.17	6.9
NGC 4490	CXOU J123030.3+413853	-	-	6.4 k	0.04	0.23	8.55

^a Koljonen et al. 2017 ^b Singh et al. 2002 ^c S. G. T. Laycock et al. 2015 ^d Clark et al. 2004 ^e Silverman et al. 2008 ^f Binder et al. 2021 ^g P. A. Crowther et al. 2010 ^h Maccarone et al. 2014 ^B Esposito et al. 2015 ^j Liu et al. 2013 ^k Esposito et al. 2013

Natal kicks

$\frac{Hobbs+2005, Atri+2019}{v_{kick}} = f_{\sigma}$

 $\frac{Fryer+2012}{v_{kick}} = f_{\sigma=265} (1 - f_{fb,CCSN})$

Giacobbo & Mapelli 2020

$$v_{kick} = f_{\sigma=265} \frac{\langle M_{NS} \rangle}{M_{rem}} \frac{M_{NS}}{\langle M_{ej} \rangle}$$

WR-COs to BCOs: role of metallicity and natal kicks

WR-NSs to BCOs: role of metallicity and natal kicks

 $\alpha_{\rm CE}$ = 3

 $\alpha_{\rm CE} = 1$

The results: Spins

Mass transfer: stable or unstable?

