

Scattering and dynamical capture of two black holes: synergies between numerical and analytical methods

S. Albanesi, A. Rashti, F. Zappa, R. Gamba, W. Cook, B. Daszuta, S. Bernuzzi, A. Nagar, and D. Radice

20th September 2024 - La Sapienza, Roma 1st TEONGRAV international workshop Simone Albanesi

Based on **2405.20398**:

Introduction

- models for non-circularized orbits
- Focus on hyperbolic systems and their transition to bound orbits
 - scatterings \rightarrow dynamical captures
- Astrophysical motivations:
 - dense environments such as globular clusters and AGN
 - **GW190521** is compatible with a dynamical capture scenario [1]
- Theoretical motivations:
 - (elliptic) models

Detectable signals from binaries with residual eccentricity: need of GW

• Detection rates are highly uncertain, but populations of these systems are expected in

• Captures are the most delicate systems to model \rightarrow useful insights for eccentric

Post-Minkowskian descriptions for scatterings can be tested with NR simulations

[1] Gamba+:<u>2106.05575</u>

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$)
- Some numerical relativity simulations, GR-Athena++ [2]
- Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_{\omega}^0 \equiv J_0 / (\mu M)$

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$)
- Some numerical relativity simulations, GR-Athena++ [2]
- Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_{\omega}^0 \equiv J_0 / (\mu M)$

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$)
- Some numerical relativity simulations, GR-Athena++ [2]
- Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_{\omega}^0 \equiv J_0 / (\mu M)$

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$)
- Some numerical relativity simulations, GR-Athena++ [2]
- Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_0^0 \equiv J_0 / (\mu M)$

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$)
- Some numerical relativity simulations, GR-Athena++ [2]
- Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_0^0 \equiv J_0 / (\mu M)$

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$)
- Some numerical relativity simulations, GR-Athena++ [2]
- Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_0^0 \equiv J_0 / (\mu M)$

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$) • Some numerical relativity simulations, GR-Athena++ [2] • Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_0^0 \equiv J_0 / (\mu M)$

- Hyperbolic systems: initial positive binding energy ($E_{ADM} > M$) • Some numerical relativity simulations, GR-Athena++ [2] • Series of runs with $E_0 = 1.011 M$ and decreasing angular mom $p_0^0 \equiv J_0 / (\mu M)$

Distinguishing scatterings and captures

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

Same simulations as before with $E_0 = 1.011 M$: scatterings, double encounters, and direct captures

Transition from unbound to bound

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

+ data	
nal	
ani,	
1.10	

- Transition from scattering to merger
- Points/errors from scattering with lowest p_{φ}^{0} and merger with highest p_{φ}^{0}
- How to distinguish scatterings from double encounters with huge apastra?
 - \rightarrow check radiated energy*
- Similar fits from GR-Athena++ and Kankani-McWilliams fit [3] but some differences
 - * if computed from fluxes, require integration of ψ_4

[3] Kankani,McWilliams 2404.03607

5

Orbital parameter space

- How to sample/explore the orbital parameter space? • Eccentricity (typically) defined only for elliptic-like orbits dynamics-eccentricity cannot be defined in a gauge-invariant way • waveform-eccentricity cannot be generalized to single/short bursts

- Alternative: initial energy (ADM) and μ -rescaled angular momentum ("ADM") of the system, (E_0, p_{φ}^0)
 - used to sample the hyperbolic PS for the analysis of GW190521 as a dynamical capture [1]

Preliminary exploration of the PS using **TEOBResumS-Dalí** [4]

[1] Gamba+:2106.05575 [4] Nagar+:2009.12857

Effective-one-body models

- •
- The effective metric is a ν -deformation of Schwarzschild/Kerr, being $\nu = m_1 m_2 / (m_1 + m_2)^2$ the symmetric mass ratio

Map from 2-body PN equations of motion to motion of a particle in an effective metric [5]

[5] Buonanno, Damour: gr-qc/9811091

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

7

Effective-one-body models

- The effective metric is a ν -deformation of Schwarzschild/Kerr, being $\nu = m_1 m_2 / (m_1 + m_2)^2$ the symmetric mass ratio
- Three building blocks:
 - Hamiltonian: $H_{\rm EOB} = M_{\rm V} / 1 + 2\nu (\hat{H}_{\nu}^{\rm eff} 1)$
 - Radiation reaction $\mathcal{F}_{\varphi,r}$

 \rightarrow solve Hamilton's equations

• Waveform $h_{\ell m}^{\text{inspl}} = h_{\ell m}^{(\epsilon,N)_{c}} \hat{h}_{\ell m}^{(\epsilon,N)_{nc}} \hat{h}_{\ell m}^{c} \hat{h}_{\ell m}^{nc}$

 $h_{\ell m} = \theta(t - t_{\ell m}^{\text{match}}) h_{\ell m}^{\text{inspl}} \hat{h}_{\ell m}^{\text{NQC}} + \theta(t_{\ell m}^{\text{match}} - t) h_{\ell m}^{\text{ringdown}}$

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

Map from 2-body PN equations of motion to motion of a particle in an effective metric [5]

non-spinning case, Schwarzschild ν -deformation

1)
$$\hat{H}_{\nu}^{\text{eff}} = \sqrt{A_{\nu} \left(1 + p_{\varphi}^{2} u^{2} + Q_{\nu}(r, p_{r_{*}})\right) + p_{r_{*}}^{2}}$$
$$A_{\nu} = 1 - 2u + 2\nu u^{3} + \dots$$

[5] Buonanno, Damour: gr-qc/9811091

7

Effective-one-body models

- The effective metric is a ν -deformation of Schwarzschild/Kerr, being $\nu = m_1 m_2 / (m_1 + m_2)^2$ the symmetric mass ratio
- Three building blocks:
 - Hamiltonian: $H_{\rm EOB} = M_{\rm V} / 1 + 2\nu (\hat{H}_{\nu}^{\rm eff} 1)$
 - Radiation reaction $\mathcal{F}_{\varphi,r}$

 \rightarrow solve Hamilton's equations

• Waveform $h_{\ell m}^{\text{inspl}} = h_{\ell m}^{(\epsilon,N)_{c}} \hat{h}_{\ell m}^{(\epsilon,N)_{nc}} \hat{h}_{\ell m}^{c} \hat{h}_{\ell m}^{nc}$

 $h_{\ell m} = \theta(t - t_{\ell m}^{\text{match}}) h_{\ell m}^{\text{inspl}} \hat{h}_{\ell m}^{\text{NQC}} + \theta(t_{\ell m}^{\text{match}} - t) h_{\ell m}^{\text{ringdown}}$

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

Map from 2-body PN equations of motion to motion of a particle in an effective metric [5]

non-spinning case, Schwarzschild ν -deformation

1)
$$\hat{H}_{\nu}^{\text{eff}} = \sqrt{A_{\nu} \left(1 + p_{\varphi}^2 u^2 + Q_{\nu}(r, p_{r_*})\right) + p_{r_*}^2}$$
$$A_{\nu} = 1 - 2u + 2\nu u^3 + \dots$$

- What has to be changed for **non-circularized** inspirals?
 - Hamiltonian ok-ish modulo non-local terms and calibration
 - Radiation has to be generalized: generic **Newtonian prefactor** [6] and PN noncircular corrections

[5] Buonanno, Damour: gr-qc/9811091

[6] Chiaramello, Nagar: 2001.11736

- Define effective potential as $V = H_{EOB}(r)$
- Some equal mass non-spinning cases:

$$p_{\varphi}, p_{r_*} = 0; \nu$$

- Define effective potential as $V = H_{EOB}(r)$
- Some equal mass non-spinning cases:

$$p_{\varphi}, p_{\varphi}, p_{r_*} = 0; \nu$$

- Define effective potential as $V = H_{EOB}(r)$
- Some equal mass non-spinning cases:

$$p_{\varphi}, p_{\varphi}, p_{r_*} = 0; \nu$$

- Define effective potential as $V = H_{EOB}(r)$
- Some equal mass non-spinning cases:

$$p_{\varphi}, p_{\varphi}, p_{r_*} = 0; \nu$$

8

- Define effective potential as $V = H_{EOB}(r)$
- Some equal mass non-spinning cases:

$$p_{\varphi}, p_{\varphi}, p_{r_*} = 0; \nu$$

Parameter space: TEOBResumS-Dalí

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

peaks)

- Number of orbital frequency peaks Nas a proxy for the number of encounters
- Parameter space dominated by scatterings and direct captures (N = 1)
- Many encounters if the initial energy is close to the parabolic limit ($E_0 = M$). **Double encounters** also permitted for higher energies: transition from scattering to capture
- Rich phenomenology produced by Dalí, but how accurate is this picture?

9

Parameter space: TEOBResumS-Dalí and NR

(number of

 \geq

- Numerical relativity simulations performed with GR-Athena++
- EOB/NR phenomenologies agrees for $E_0 \lesssim 1.02 \ M (v_{\rm cm} \lesssim 0.2)$
- Dalí can **continuously span** the parameter space from quasi-circular binaries to hyperbolic systems
- EOB/NR deviations increase with the for higher energy/velocity (cfr. NR fits of the scattering-capture transition vs EOB one)
- Dalí built on PN results and informed only on quasi-circular NR simulations: large room for improvement

Scatterings

- Scattering angles computed extrapolating relative tracks
- Each color corresponds to an energy series: markers for NR, lines for EOB
- Scattering-capture transition marked by vertical bands (NR) and dashed lines (EOB)
- As before, the EOB/NR disagreement increases for higher energies
- Agreement restored for high angular momentum (weak field)
- We also considered scatterings of unequal mass binaries (not shown in this plot)

 \succ

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

EOB/NR mismatches

- (2,2) mismatches useful to quantify the accuracy of the model
- Configurations with $E_0 \lesssim 1.02 \ M$
- Initial data optimization on a small region
- Nonspinning and spin-aligned $(|\chi_i| = 0.5)$ equal mass + higher mass ratios up to q = 3 (nonspinning)
- Below/around 1% for most cases, some around 3%
- NR waveforms are far from being perfect! Issues when integrating the Weyl scalars. CCE / metric-perturbation-extraction?
- In the paper we also studied energetic curves

Test-mass: useful insights

- We studied a few test-mass cases: dynamics driven by a PN-radiation reaction • Numerical waveform obtained by solving RWZ eqs. with RWZHyp [7,8]

[7] Bernuzzi, Nagar: <u>1003.0597</u> [8] Bernuzzi, Nagar, Zenginoglu: <u>1107.5402</u>

Test-mass: useful insights

waveform associated to the last four close passages of the red trajectory

- We studied a few test-mass cases: dynamics driven by **PN-radiation reaction**
- Numerical waveforms obtained by solving RWZ eqs. in the time-domain

- Different EOB waveforms computed on the same dynamics
- Noncircular corrections with explicit derivatives (not PN-expanded in the Newtonian contribution) seem more reliable. In particular, they catch the low-frequency signal generated at large separations

14

Conclusions

- EOB models can be used to describe these systems, with some caveats: avoid explicit dependance on eccentricity

 - low-energy regime ($E_0 \leq 1.02 M$) or large angular momentum (weak-field) not too-high spins (to quantify), inherited from QC case phenomenological ringdown model still calibrated on QC data
- Next steps to increase/extend EOB accuracy:
 - inclusion of post-Minkowskian results in the dynamical sector (Lagrangian EOB?)
 - NR-information from non-circularized binaries (e.g. ringdown)
- Test-mass limit always useful to gain insights on EOB models, but also on full-NR simulations

Exploration of hyperbolic systems with NR and TEOBResumS-Dalí

Conclusions

- EOB models can be used to describe these systems, with some caveats: avoid explicit dependance on eccentricity

 - low-energy regime ($E_0 \leq 1.02 M$) or large angular momentum (weak-field) not too-high spins (to quantify), inherited from QC case phenomenological ringdown model still calibrated on QC data
- Next steps to increase/extend EOB accuracy:
 - inclusion of post-Minkowskian results in the dynamical sector (Lagrangian EOB?)
 - NR-information from non-circularized binaries (e.g. ringdown)
- Test-mass limit always useful to gain insights on EOB models, but also on full-NR simulations

Exploration of hyperbolic systems with NR and TEOBResumS-Dalí

Thank you for your attention!

Backup slides

Analytical corrections to radiation

- How can we describe noncircularized binaries?
 - 1. Hamiltonian: already generic, nothing to do (modulo calibration/non local terms) 📀
 - 2. Radiation reaction $(\mathcal{F}_{\varphi}, \mathcal{F}_{r})$: noncircular corrections in \mathcal{F}_{φ}
 - 3. Waveform: noncircular corrections in each multipole
- Noncircular terms:
 - \mathcal{F}_r from generic energy/momentum balance eqs. [6]

 - Extended noncircular corrections up to 2PN [9-12]: improvement of the waveform
 - [6] Bini, Damour: 1210.2834 [7] Chiaramello, Nagar : 2001.11736
 - [8] Albanesi+ : 2104.10559
 - [9] Khalil+:2104.11705

- [10] Placidi+ : 2112.05448
- [11] Albanesi+ : 2202.10063
- [12] Albanesi+ : 2203.16286

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

• Generic "Newtonian" prefactor [7,8], e.g. $\hat{h}_{22}^{(N,0)_{nc}} = 1 - \frac{\dot{r}^2}{2r\Omega^2} - \frac{\dot{r}^2}{2r\Omega^2} + \frac{2i\dot{r}}{r\Omega} + \frac{i\Omega}{2\Omega^2}$ (crucial thing: \dot{r} , $\dot{\Omega}$,...

$$h_{\ell m}^{\text{inspl}} = h_{\ell m}^{(\epsilon, N)_{\text{c}}} \hat{h}_{\ell m}^{\text{c}} \hat{h}_{\ell m}^{(\epsilon, N)_{\text{nc}}} \hat{h}_{\ell m}^{\text{nc}},$$
$$\mathcal{F}_{\varphi} = -\frac{32}{5} \nu r_{\Omega}^{4} \Omega^{5} \hat{f}_{\text{nc}_{22}},$$

$$\hat{h}_{\ell m}^{\text{nc}} = \hat{h}_{\ell m}^{\text{inst}} \hat{h}_{\ell m}^{\text{hered}}$$
$$\hat{f}_{\text{nc}_{22}} = \hat{F}_{22} \hat{f}_{\varphi,22}^{\text{N}_{\text{nc}}} + \hat{F}_{21} + \sum_{\ell=3}^{8} \ell = 3$$

Test: integration of test-mass waveforms

NR: integration from ψ_4

EOB/NR time-domain comparison

- Initial conditions in an ideal world: same $(E_0/M, J_0/M^2)$ for both EOB/NR, r_0^{EOB} from EOB/ADM 2PN coords transformation
- Practical issues, e.g. junk-radiation, introduce small variations and may lead to completely different phenomenologies
- Optimize EOB ICs to minimize unfaithfulness (mismatch), conceptually similar to what is done for elliptic binaries
- NR calibration on QC simulations (also for the ringdown)
- Artifacts in the NR waveform due to integration

Potentials for QC and elliptic cases

Evolution of Schwarzschild potentials under the effect of EOB radiation reaction

S. Albanesi - Scatterings and dynamical captures of two black holes (2405.20398) - TEONGRAV, Rome

21