

INFN -Torino

Effective One Body model for EMRIs

Mattia Panzeri

16/09/2024

1^st TEONGRAV Workshop, Rome

EMRIs

- Two BH with very different masses
- Usually a SMBH and a Stellar Mass BH
- Year(s)-long inspiral
- Signal in the LISA band
- Superposed years long signals from
 - different sources

$$q \equiv \frac{m_1}{m_2} > 10^4$$

Extreme Mass Ratio Inspirals

EOB in a Nutshell BUILDING BLOCKS

TECHNIQUES

Deformation parameter

EFFECTIVE METRIC

 $\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$

CONSERVATIVE DYNAMICS

ENERGY LEVEL MAPPING

Between the effective Hamiltonian and the real one

RESUMMATION

To extend the validity of the PN approximation

THE WAVEFORMFrom the PN approximated
solution of Einstein Equation

RADIATION REACTION The Hamiltonian we get from the metric with the three potentials A, D, and Q

Effect on the dynamics of the radiated energy and angular momentum

TEOBResumS

CALIBRATION AND BENCHMARK

COMPARABLE MASSES

LARGE MASS RATIO

- Eccentricity
- Spin on both object
- Spin Precession
- Dynamical Capture
- BH Scattering
- Binary Neutron Stars

FEATURES

Gravitational Self Force

- Deviation from the test mass case due to the second object's gravitational field
- Nowdays 2GSF calculation : 2^nd order in $\,\epsilon=\frac{m_2}{-}\leq 1$

Two timescale expansion

Slow: radiation reaction

Fast: orbital dynamic

LMR Analytical Framework

EOB Potentials

$$A(u;\nu) = 1 - 2u + \nu a_{1SF}(u) + O(\nu)$$

$$\bar{D}(u;\nu) = \frac{1}{AB} = 1 + \nu \bar{d}_{1SF}(u) + O(\nu)$$

$$Q(u, p_{r_{\star}};\nu) = \nu q_{1SF}(u) p_{r_{\star}}^4 + O(\nu^2)$$

The SF functions are calculated analytically in D.Bini +, 2014, 1403.2366 and numerically in S. Akcay +, 2012, 1209.0964; S. Akcay +, 2013, 1308.5223; M. van de Meent +, 2015, 1506.04755 S. Akcay +, 2016, 1512.03392

$$p_{r_{\star}} \equiv \left(\frac{A}{B}\right)^{1/2} p_{r}$$
$$u \equiv \frac{1}{r}$$

6

(2) (2^{2})

Radiation Reaction

In test mass limit, Nagar&Albanesi, 2022. 2207.14002

Known in closed form

22PN flux in non spinning test mass limit computed from R.Fujita, 2012, 1211.5535 EOB flux is mostly 6PN, with spinning contribution from F. Messina, 2018, 1801.02366

 $F_{\ell m} = \frac{1}{8\pi} m^2 \Omega^2 |h_{\ell m}(x)|^2$

 $\hat{f} = \sum_{\ell=1}^{\ell_{\max}} \sum_{\ell=1}^{\ell} (F_{22}^N)^{-1} F_{\ell m}, \text{ where } F_{22}^N = \frac{32}{5} \nu^2 x^5.$

PN expanded residual, eventually factorized and resummed

Analytical waveform

An example with eccentricity and spin on both objects

Nagar&Albanesi, 2022. 2207.14002

FIG. 5. Strain generated by a binary with $q = 10^3$, $e_0 = 0.5$, $\chi_1 = 0.3$, and $\chi_2 = 0.1$, as seen by an observer whose line of sight is inclined by 45° with the orbital plane. In order to highlight the relevance of the higher modes, we show the strain computed using different values for l_{max} . We do not include m = 0 modes. We also show a zoom on a radial period (left bottom panel). The portion of the strain shown in the upper panel corresponds to the trajectory highlighted in blue in the right bottom panel.

EOB-GSF Comparison

Only 22 mode. A.Albertini + , 2022, 2208.02055

 $\Psi_{22}^1 =$

 $\Psi_{22}^2 =$

Time domain phasing: time and phase shift to minimize the rms over a chose interval

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\Delta \phi(t_i, \tau, \alpha))^2}$$

$$\Delta \phi(t_i, \tau, \alpha) = (\phi_2(t_i - \tau) - \alpha) - \phi_1(t_1)$$

OSF
$$\Psi_{22}^1 = A_{22}^1(t_1) e^{-i\psi_1(t_1)}$$

OB
$$\Psi_{22}^2 = A_{22}^2(t_2 - \tau) e^{-i[\psi_2(t_2 - \tau) - \alpha]}$$

Improving the resummation

- Wanting to include spin in the test mass limit
- 11PN computation (R. Fujita, 2015, 1412.5689)
- Numerical fluxes (S.Hughes +, 2013, 1305.2184)

DOES NOT WORK FOR HIGH SPIN!

New Resummation

Working on the $ho_{\ell m}$ to choose the right PN order to Padè resum in a slightly different way

$$\rho_{\ell m} = \underbrace{1 + a_1 x + a_2 x^2 + \dots + b_1 x^3 \log x (1 + a'_1 x + \dots)}_{\rho_{\ell m}^{\text{log}}} + \dots$$

Logarithmic terms as constant inside the coefficient for the Padè resummation

OLD

Resum only the rational coefficient and in case, separetly, the logarithmic coefficient

BEST RESULT:

Working mostly at 6PN with the main modes (2,2),(2,1),(3,2), (3,3),(4,4) taken at 7PN and fitted with a numerical test mass result using a 7.5 and a 8 PN parameter

Results

Conclusions

- EOB can generate accurate EMRIs waveform;
- EOB could be used for data analysis;
- The new resummation improves the flux.
- TEOBResumS is publicly available at https://bitbucket.org/teobresums/teobresums/src

Thank you!

More results pt.1

More results pt.2

More results pt.3

v

Performance

Test for EOB for EMRIs PA approximation of the EOB model described in A.Nagar +, 2019, 1805.03891

$$\chi_{\text{eff}} = \chi_1 \frac{m_1}{M} + \chi_2 \frac{m_2}{M}$$

Albertini +, 2024, 2310.13578