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EOB approach in a nutshell
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EOB

Ereal = M 1 + 2ν ( Eeff

μ
− 1)• EOB energy map

S1

S2m1

m2

S

S*M
μ

geff
μν (M, ν)

Two basic building blocks in the conservative dynamics:

• Relativistic mass-shell condition for the effective particle 

[A. Buonanno, T. Damour; 1999]

M = m1 + m2, μ = m1m2 /M, ν ≡ μ /M

gμν
eff(Xρ)PμPν + μ2 + Q(Xμ, Pμ) = 0

S = S1 + S2, S* =
m2

m1
S1 +

m1

m2
S2
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EOB and post-Minkowskian information
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gμν
eff(Xρ)PμPν + μ2 + Q(Xμ, Pμ) = 0

In standard EOB models based on post-Newtonian information: 

geff
μν (Xρ)dXμdXν = − A(R)c2dT2 + B(R)dR2

+R2C(R)(dθ2 + sin2 θdϕ2)

which is solved for  assuming P0 = − Eeff Q(Xμ, Pμ) = Q(Xi, Pi)

Heff = Heff(A, B, C, Q)Heff = Eeff Energy map HEOB = M 1 + 2ν ( Heff

μ
− 1)
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In standard EOB models based on post-Newtonian information: 

geff
μν (Xρ)dXμdXν = − A(R)c2dT2 + B(R)dR2

+R2C(R)(dθ2 + sin2 θdϕ2)

which is solved for  assuming P0 = − Eeff Q(Xμ, Pμ) = Q(Xi, Pi)

Heff = Heff(A, B, C, Q)Heff = Eeff Energy map HEOB = M 1 + 2ν ( Heff

μ
− 1)

With post-Minkowskian (PM) information, which is inherently energy dependent, at 
least one function among  must be allowed to depend on {A, B, C, Q} Eeff

Heff = Heff(A, B, C, Q, Heff)Heff = Eeff   recursive definition→
(the self dependence appears at 2PM)

 are then determined from the knowledge of the PM-expanded 
scattering angle
{A, B, C, Q}

χPM( j, γ) = ∑
n

2
χn(γ, ν)

jn

intricate dependence on γ = Eeff /μ
• 3PM  hyperbolic functions→
• 4PM  elliptic integrals, polylogs →

[M. Khalil et al.; 2022] [A. Buonanno et al.; 02/2024] [A. Buonanno et al.; 05/2024]
[A. Antonelli et al.; 2019][T. Damour; 2018]
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LEOB: a novel Lagrange-multiplier approach
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S[Xμ, Pμ] = ∫ [PμdXμ]on−shell = ∫ PidXi − Heff(Xi, Pi)dTeff

replaced by

S[Xμ, Pμ, eL] = ∫ PμdXμ − eL 𝒞 (Xμ, Pμ) dτ

Lagrange multiplier

EOB mass-shell constraint 𝒞 = gμν
eff(Xρ)PμPν + μ2 + Q(Xμ, Pμ)

Evolution parameter associated to eL
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EOB mass-shell constraint 𝒞 = gμν
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δS[Xμ, Pμ, eL] = 0 →
dXμ

dτ
= eL
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∂Pμ

,
dPμ

dτ
= − eL

∂𝒞
∂Xμ

, 𝒞 = 0

From the variational principle:

Evolution parameter associated to eL

Fixing  while considering  and τ = Treal
dTeff

dTreal
=

dEreal

dEeff
=

M
Ereal

X0 = Teff

M
Ereal

= eL
∂𝒞
∂P0

= − eL
∂𝒞

∂Eeff
eL = −

M
Ereal ( d𝒞

dEeff )
−1
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treal =
Treal

GM
, xμ =

Xμ

GM
, pμ =

Pμ

μ
, γ =

Eeff

μ
, h =

Ereal

M
, 𝒞̂ =

𝒞
μ2

LEOB equations of motion
In terms of mass-rescaled quantities, the resulting Euler-Lagrange equations are:

dxi

dtreal
= −

1
h ( ∂𝒞̂

∂γ )
−1

∂𝒞̂
∂pi

,
dpi

dtreal
=

1
h ( ∂𝒞̂

∂γ )
−1

∂𝒞̂
∂xi

,
dγ

dtreal
= 0

plus the equation  that only affects the determination of the initial conditions. 𝒞̂ = 0
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treal =
Treal

GM
, xμ =

Xμ

GM
, pμ =

Pμ

μ
, γ =

Eeff

μ
, h =

Ereal

M
, 𝒞̂ =

𝒞
μ2

LEOB equations of motion
In terms of mass-rescaled quantities, the resulting Euler-Lagrange equations are:

dxi

dtreal
= −

1
h ( ∂𝒞̂

∂γ )
−1

∂𝒞̂
∂pi

,
dpi

dtreal
=

1
h ( ∂𝒞̂

∂γ )
−1

∂𝒞̂
∂xi

,
dγ

dtreal
= 0

plus the equation  that only affects the determination of the initial conditions. 𝒞̂ = 0

To go beyond the conservative dynamics, we generalize the evolution equation 
of  by adding a radiation-reaction force , i.e.pμ ℱμ

dxi

dtreal
= −

1
h ( ∂𝒞̂

∂γ )
−1

∂𝒞̂
∂pi

,
dpi

dtreal
=

1
h ( ∂𝒞̂

∂γ )
−1

∂𝒞̂
∂xi

+ ℱi,
dγ

dtreal
= − ℱ0

with the condition  ensuring that  holds along the whole 

radiation-reacted evolution

dxμ

dtreal
ℱμ = 0 𝒞̂ = 0
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LEOB gauge flexibility
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𝒞̂ = gμν
eff(xρ)pμpν + 1 + Q(xμ, γ)

The LEOB approach makes it easy to admit any functional dependence on .γ
Without any loss of generality one can either make the effective metric energy 
independent, with the constraint 

or choose a geodesic-like constraint of the type

𝒞̂ = gμν
eff(xρ, γ)pμpν + 1

In both cases there is still a large leftover gauge freedom.
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𝒞̂ = gμν
eff(xρ)pμpν + 1 + Q(xμ, γ)

The LEOB approach makes it easy to admit any functional dependence on .γ
Without any loss of generality one can either make the effective metric energy 
independent, with the constraint 

or choose a geodesic-like constraint of the type

𝒞̂ = gμν
eff(xρ, γ)pμpν + 1

In both cases there is still a large leftover gauge freedom.

Focusing on the second, in fact, we have  
whereas the scattering angle  can just fix one of the three metric functions. 

This is due to:

gμν
eff(xρ, γ) = gμν

eff[A(r, γ), B(r, γ), C(r, γ)]
χPM( j, γ)

• The usual coordinate freedom of general relativity
• The fact that, just like an Hamiltonian,  admits the set of canonical 

transformations as symmetries 
𝒞̂

We have thus to impose two conditions on {A, B, C}



Andrea Placidi

Gauge fixed constraint and fluxes
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We select the constraint  and choose:𝒞̂ = gμν
eff(xρ, γ)pμpν + 1

•     Schwarzschild-like coordinates C(r, γ) = 1 →
•     Resulting constraint in simple formA(r, γ)B(r, γ) = 1 →

𝒞̂ = −
γ2

A(r, γ)
+ p2

r A(r, γ) +
p2

φ

r2
+ 1
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We select the constraint  and choose:𝒞̂ = gμν
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•     Schwarzschild-like coordinates C(r, γ) = 1 →
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𝒞̂ = −
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+ p2
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φ
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Remaining metric function : A(r, γ)

χ4PM,local( j, γ) → A4PM,local(r, γ)

χ≤3PM( j, γ) → A≤3PM(r, γ) PN completion , comprensive

of nonlocal tail-transported effects

         [Piero Rettegno’s talk on Wednesday]   

ΔA≥4PN(r, γ)

A(r, γ) = A≤3PM(r, γ) + A4PM,local(r, γ) + ΔA≥4PN(r, γ)
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Remaining metric function : A(r, γ)

χ4PM,local( j, γ) → A4PM,local(r, γ)

χ≤3PM( j, γ) → A≤3PM(r, γ) PN completion , comprensive

of nonlocal tail-transported effects

         [Piero Rettegno’s talk on Wednesday]   

ΔA≥4PN(r, γ)

A(r, γ) = A≤3PM(r, γ) + A4PM,local(r, γ) + ΔA≥4PN(r, γ)

Fluxes and waveform:

ℱγ = − ·φℱφ

ℱr = 0 ℱφ → PN-based factorized and 
resummed prescription of the 
qc iteration of TEOBResumS

[quasi-circular (qc) orbits]

[T. Damour, B. R. Iyer. A. Nagar; 2009]

hℓm →
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No numerical relativity (NR) tuning in the dynamics! NR just in NQCs and ringdown 

merger merger

4PM-4PN  the PN completion  is stopped at the 4PN order→ ΔA≥4PN(r, γ)
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Testing LEOB: unfaithfulness
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No numerical relativity (NR) tuning in the dynamics! NR just in NQCs and ringdown 
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4PM-4PN  the PN completion  is stopped at the 4PN order.→ ΔA≥4PN(r, γ)
We consider 17 nonspinning NR waveforms from the SXS public catalogue and the 

 nonspinning waveform of [J. You et al.;2022] q = 15



Andrea Placidi

Testing LEOB: unfaithfulness

9

No numerical relativity (NR) tuning in the dynamics! NR just in NQCs and ringdown 
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 nonspinning waveform of [J. You et al.;2022] q = 15
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The simplification and flexibility brought about by the LEOB approach have a notable 
impact in the development of PM-based EOB models built upon the 4PM analytical 
information that is currently available, and we expect even more benefits when  
higher-order PM perturbative results will be achieved.

Conclusions

10

With LEOB, our novel Lagrange-multiplier approach, we are able to provide a 
complete description, within the EOB framework and in the form of Euler-Lagrange 
equations, of the dynamical evolution of a binary system of black holes. 

Crucially, it avoids the need to solve the EOB mass-shell constraint for an effective 
Hamiltonian, at the rather small cost of having one additional evolution equation for 
the energy .γ

When applied to a complete waveform model, the conservative dynamics of the 
LEOB approach yields good results up to merger (especially for ), where the 
phase difference with NR remains quite low even without NR tuning the dynamics. 
This is also confirmed by looking at the unfaithfulness.

q ≥ 6

LEOB can be also applied to spinning binary black holes (work in progress)
          [Piero Rettegno’s talk on Wednesday]
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With LEOB, our novel Lagrange-multiplier approach, we are able to provide a 
complete description, within the EOB framework and in the form of Euler-Lagrange 
equations, of the dynamical evolution of a binary system of black holes. 

Crucially, it avoids the need to solve the EOB mass-shell constraint for an effective 
Hamiltonian, at the rather small cost of having one additional evolution equation for 
the energy .γ

When applied to a complete waveform model, the conservative dynamics of the 
LEOB approach yields good results up to merger (especially for ), where the 
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q ≥ 6

LEOB can be also applied to spinning binary black holes (work in progress)
          [Piero Rettegno’s talk on Wednesday] Thanks for your  

attention!
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Link between LEOB and the -based EOB H
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The traditional Hamiltonian EOB dynamics is regained when using a mass-shell 
constraint in the explicitly solved form

𝒞̂H ≡ Ĥeff(xi, pi) − γ

which implies

∂𝒞̂H

∂γ
= − 1 ,

∂𝒞̂H

∂pi
=

∂Ĥeff

∂pi
,

∂𝒞̂H

∂xi
=

∂Ĥeff

∂xi

dxi

dtreal
= −

1
h ( ∂𝒞̂H

∂γ )
−1

∂𝒞̂H

∂pi
,

dpi

dtreal
=

1
h ( ∂𝒞̂H

∂γ )
−1

∂𝒞̂H

∂xi
+ ℱi,

dγ
dtreal

= − ℱ0

We have in fact:

dxi

dtreal
=

1
h

∂Ĥeff

∂pi
,

dpi

dtreal
= −

1
h

∂Ĥeff

∂xi
+ ℱi
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Relations between  and A(r, γ) χPM(r, γ)
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A − As = ∑
n

ān

rn
, ΔχPM = ∑

n

2
χn(γ, ν) − χS

n(γ, ν)
jn

p∞ = γ2 − 1
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Numerical waveforms used in the tests
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+ the  nonspinning waveform of [J. You et al.;2022] q = 15
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Effects of NQC corrections and ringdown
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Max unfaithfulness versus  q
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Unfaithfulness with NR tuning at 5PM-5PN


