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EOB approach in a nutshell

"y
S=SI+S2, S>x<=_Sl+_S2

Two basic building blocks in the conservative dynamics:

 EOB energy map

* Relativistic mass-shell condition for the effective particle

g (XP)P,P,+ u* + Q(X*,P,) = 0
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EOB and post-Minkowskian information

In standard EOB models based on post-Newtonian information:

rgﬁﬁf(X”)dX”dX” = — A(R)c*dT? + B(R)dRD

+R*C(R)(dO? + sin® Od¢p?) )

(gg‘g(Xp)PﬂPy +pu?+ QX P,) = 0) 9

-
which is solved for P, = — E_; assuming Q(X*, P.) = Q(X', P,)

H
LY 1l = oA B.C.0) thon =142 (P21 )
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EOB and post-Minkowskian information

In standard EOB models based on post-Newtonian information:

rgﬁﬁf(X”)dX”dX” = — A(R)c*dT? + B(R)dRD

+R2C(R)(dO? + sin? 8dg?) y

(85§<Xp>PﬂPy +u*+ Q(XH, P,) = o) +)

\

which is solved for P, = — E_; assuming Q(X*, P.) = Q(X', P,)

H
LY 1l = oA B.C.0) thon =142 (P21 )

With post-Minkowskian (PM) information, which is inherently energy dependent, at
least one function among {A, B, C, O} must be allowed to depend on E_

R .. = H.(A.B.C.0.Hy) — recursive definition
[T. Damour; 2018] [A. Antonelii et al.; 2019] (the self dependence appears at 2PM)
[M. Khalil et al.; 2022] [A. Buonanno et al.; 02/2024] [A. Buonanno et al.; 05/2024]

{A, B, C, O} are then determined from the knowledge of the PM-expanded

scattering angle intricate dependence on y = E_/u
. X5 V) . .
Yem(J,7) = Z 2 -  3PM — hyperbolic functions
, J « 4PM — elliptic integrals, polylogs




Andrea Placidi 1st TEONGRAY international workshop
LEOB: a novel Lagrange-multiplier approach

S[X*, P,] = [[PﬂdXﬂ]On-she“ = JPidX" — Hp(X', P)dT.q

replaced by o
Lagrange multiplier

_— Evolution parameter associated to ¢;
SIX*, P, e,] = JPﬂdX” ~ (& (X".P,) dr

AN

EOB mass-shell constraint € = ge”f?(Xp)PﬂPy + u? + Q(XH, P)
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LEOB: a novel Lagrange-multiplier approach

S[X*, P,] = J[PﬂdXﬂ]On-sheﬂ = JPidX" — Hp(X', P)dT.q

replaced by o
Lagrange multiplier

_— Evolution parameter associated to ¢;
SIX*, P, e,] = JPﬂdX” ~ (& (X".P,) dr

AN

From the variational principle:

dx* 0C dpP, 0C
# dr 0Pﬂ dt oXH

EOB mass-shell constraint € = ge”f?(Xp)PﬂPy + u? + Q(XH, P)

€ =0
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LEOB: a novel Lagrange-multiplier approach

S[X*, P,] = [[PﬂdXﬂ]On-she“ = JPl-dX" — Hp(X', P)dT.q

replaced by o
Lagrange multiplier

_— Evolution parameter associated to ¢;
SIX*, P, e,] = JP#dX” ~ (& (X".P,) dr

AN

From the variational principle:

EOB mass-shell constraint € = gé‘f?(Xp)PﬂPy + u? + Q(XH, P)

dx* 06 dpP, 0C
oSIX*,P,e] =0 —» ———=¢ —, — = - —, € =0
# dt 6Pﬂ dt oXH
! | dT.. dE )
M
Fixing 7 = 1 ., while considering Ml - el _ and XU = T
dTreal dEeff Ereal
\_ * J
~1
M 06 06 M d€
= — = —¢ q e = —
Ereal oP 0 aEeff Ereal dEeff
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LEOB equations of motion

In terms of mass-rescaled quantities, the resulting Euler-Lagrange equations are:

plus the equation € = 0 that only affects the determination of the initial conditions.
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LEOB equations of motion

In terms of mass-rescaled quantities, the resulting Euler-Lagrange equations are:

plus the equation € = 0 that only affects the determination of the initial conditions.

To go beyond the conservative dynamics, we generalize the evolution equation
of p, by adding a radiation-reaction force 7 , i.e.

dx*

with the condition F = 0 ensuring that € = 0 holds along the whole

H
treal

radiation-reacted evolution
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LEOB gauge flexibility

The LEOB approach makes it easy to admit any functional dependence on y.

Without any loss of generality one can either make the effective metric energy
independent, with the constraint

Ja\

— oMV
€ = g")p,p, + 1+ 00+, 7)
or choose a geodesic-like constraint of the type
s
% — geff(xpa }/)p'upy + 1

In both cases there is still a large leftover gauge freedom.
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LEOB gauge flexibility

The LEOB approach makes it easy to admit any functional dependence on y.

Without any loss of generality one can either make the effective metric energy
independent, with the constraint

Ja\

— oMV
€ = g"(x)p,p, + 1+ O(H,7)

or choose a geodesic-like constraint of the type
s
% — geff(xpa }/)p'upy + 1

In both cases there is still a large leftover gauge freedom.

Focusing on the second, in fact, we have gé"f’;(xp, y) = gé‘f?[A(r, V), B(r,v), C(r,y)]

whereas the scattering angle yp\(J, 7) can just fix one of the three metric functions.
This is due to:

* The usual coordinate freedom of general relativity

* The fact that, just like an Hamiltonian, € admits the set of canonical
transformations as symmetries

We have thus to impose two conditions on {A, B, C}
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Gauge fixed constraint and fluxes

We select the constraint € = gé"f?(x/), y)p,p,+ 1 and choose:

« C(r,y) =1 — Schwarzschild-like coordinates
« A(r,y)B(r,y) =1 — Resulting constraint in simple form
7’ Py

+PPACLY) +— + 1
r

A(ny)
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Gauge fixed constraint and fluxes

We select the constraint ¢ = gé"f?(x/), y)p,p, + 1 and choose:
« C(r,y) =1 — Schwarzschild-like coordinates

« A(r,y)B(r,y) =1 — Resulting constraint in simple form

) 2

p
+PPAGrY) +— + 1

r

Y

A(ny)

Remaining metric function A(r, y):

X<3pm(J> YY) = Agpm(7,7) A "PN completion AAs 4pN(5 1), comprensive |

9 of nonlocal tail-transported effects
_ — [Piero Rettegno’s talk on Wednesday]

@4PM,local(j ’ 7/) — A4PM,local(r ’ }/)J
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Gauge fixed constraint and fluxes

We select the constraint ¢ = gé"f?(x/), y)p,p, + 1 and choose:
« C(r,y) =1 — Schwarzschild-like coordinates

« A(r,y)B(r,y) =1 — Resulting constraint in simple form

) 2

4 P

— + p2A(nY) + — + 1
Ao P (nn+—

Remaining metric function A(r, y):

X<3pm(J> YY) = Agpm(7,7) A "PN completion AAs 4pN(5 1), comprensive |

9 of nonlocal tail-transported effects
_ — [Piero Rettegno’s talk on Wednesday]

@4PM,local(j ’ 7/) — A4PM,local(r ’ }/)J

Fluxes and waveform:

% =0 [quasi-circular (gc) orbits] F o, PN-based factorized and
resummed prescription of the
Fo=—QpF hs,, = |gc iteration of TEOBResumS
’ Y [T. Damour, B. R. lyer. A. Nagar; 2009]
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Testing LEOB: phasings

No numerical relativity (NR) tuning in the dynamics! NR just in NQCs and ringdown

4PM-4PN — the PN completion AA. ,pN(7, 7) is stopped at the 4PN order

qg=1 qg=29.5
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Testing LEOB: unfaithfulness

No numerical relativity (NR) tuning in the dynamics! NR just in NQCs and ringdown

4PM-4PN — the PN completion AA. ,pN(7, 7) is stopped at the 4PN order.

We consider 17 nonspinning NR waveforms from the SXS public catalogue and the
g = 15 nonspinning waveform of [J. You et al.;2022]

o' T T ]
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Testing LEOB: unfaithfulness

No numerical relativity (NR) tuning in the dynamics! NR just in NQCs and ringdown

4PM-4PN — the PN completion AA. ,pN(7, 7) is stopped at the 4PN order.

We consider 17 nonspinning NR waveforms from the SXS public catalogue and the
g = 15 nonspinning waveform of [J. You et al.;2022]
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Conclusions

With LEOB, our novel Lagrange-multiplier approach, we are able to provide a
complete description, within the EOB framework and in the form of Euler-Lagrange
equations, of the dynamical evolution of a binary system of black holes.

Crucially, it avoids the need to solve the EOB mass-shell constraint for an effective
Hamiltonian, at the rather small cost of having one additional evolution equation for

the energy y.

The simplification and flexibility brought about by the LEOB approach have a notable
impact in the development of PM-based EOB models built upon the 4PM analytical
information that is currently available, and we expect even more benefits when
higher-order PM perturbative results will be achieved.

When applied to a complete waveform model, the conservative dynamics of the

LEOB approach yields good results up to merger (especially for g > 6), where the
phase difference with NR remains quite low even without NR tuning the dynamics.
This is also confirmed by looking at the unfaithfulness.

LEOB can be also applied to spinning binary black holes (work in progress)
—» [Piero Rettegno’s talk on Wednesday]
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Link between LEOB and the H-based EOB

The traditional Hamiltonian EOB dynamics is regained when using a mass-shell
constraint in the explicitly solved form

%H = ﬁeff(xiapi) _ }/

which implies

A _1 A
06 06
_H) H., o

dy ox!

dtreal - z axi
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Relations between A(r, y) and yp\(7, 7)

(}/9 V) _)(5(}/7 V)

A-A=) —, A)(PM:ZZXH
n ]n

B 3AX3
) (42 = 1)p2,  (49% — 1) peo
0 12(1409% — 23590 + 12371 — 1372 + 1) Axa 16 (357 — 3072 + 3) Ax3

_|_
(372 —1) (492 — 1) (572 — 1) p& 72 (372 — 1)% (572 — 1) p2,
3 (357* — 3072 + 3) Axs 32Ax4

(42 -1) (52 —-1)p3, 3 (572 —1)p%
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Numerical waveforms used in the tests

TABLE IV: Properties of the 17 nonspinning public NR SXS waveforms used to test the new LEOB waveform model for
nonspinning binaries. From left to right, the columns report: the identification number; the SXS classification name; the mass
ratio ¢ = m1/ma > 1; the symmetric mass ratio v = mimz/(m1 +mz2)>; the number of orbits between ¢t = 0 and the time when
a common event horizon is formed; the orbital eccentricity ¢ determined at relaxed measurement time; the £ = m = 2 phase-
difference 64)%1;}% between the highest and second highest resolution accumulated between ¢ = 600M and the peak amplitude of
the highest resolution data.

# name q v # orbits € [10_3} S mns [rad]
1 SXS:BBH:0180 1 0.2500 28.1825 0.0514 —0.4247
2 SXS:BBH:0007 1.5 0.2400 29.0922 0.4200 —0.0186
3 SXS:BBH:0169 2 0.2222 15.6805 0.1200 —0.0271
4| SXS:BBH:0259 2.5 0.2041| 28.5625 0.0590 —0.0080
5} SXS:BBH:0030 3 0.1875 18.2228 2.0100 —0.0870
6| SXS:BBH:0167 4 0.1600 15.5908 0.0990 —0.5165
7| SXS:BBH:0295 4.5 0.1488 27.8067 0.0520 +0.2397
8 SXS:BBH:0056 5} 0.1389 28.8102 0.4900 +0.4391
9 SXS:BBH:0296 5.9 0.1302 27.9335 0.0520 +0.4427

10 SXS:BBH:0166 6 0.1224 21.5589 0.0440 e

11 SXS:BBH:0298 7 0.1094 19.6757 0.0610 —0.0775 4

12 SXS:BBH:0299 7.5 0.1038 20.0941 0.0590 —0.0498

13| SXS:BBH:0063 8 0.0988| 25.8255 0.2800 +1.0094

14| SXS:BBH:0300 8.5 0.0942 18.6953 0.0570 —0.0804

15| SXS:BBH:0301 9 0.0900 18.9274 0.0550 —0.1641

16 SXS:BBH:0302 9.5 0.0862 19.1169 0.0600 +0.0206

17| SXS:BBH:0303| 10 0.0826 19.2666 0.0510 +0.2955

+ the g = 15 nonspinning waveform of [J. You et al.;2022]
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Effects of NQC corrections and ringdown
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Max unfaithfulness versus ¢
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Unfaithfulness with NR tuning at 5PM-5PN
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