

Primordial Black Holes or else? Tidal tests on subsolar gravitational-wave observations

Speaker:

Francesco Crescimbeni

Based on: F. Crescimbeni, G. Franciolini, P. Pani, and A. Riotto, *Phys.Rev.D* 109 (2024) 12, 124063.

Introduction

During the first 3 observing runs, LVK collaboration detected nearly 90 events → nearly 100 hundred for \bullet the fourth observing runs, and many more are expected in the future with 3G detectors.

Putative detections of subsolar binaries

• The observation of at least a subsolar mass (SSM) object in a binary black hole merger could be a signature of primordial black holes (PBHs) detection.

 Subsolar mergers searches have been performed thought the years, finding no conclusive evidences [LVK,'18; LVK '19; LVK '22; Nitz-Wang, 2102.00868].

• SSM-like trigger (denoted as SSM200308) detected during O3 was recently reanalyzed [Prunier+, 2311.16085] under the assumption that it was a binary of primordial black holes (PBHs).

Source ref. Prunier+, 2311.16085

Objectives of this work

• A signal compatible with a subsolar merger could be observed already during the ongoing O4 run of the LIGO/Virgo/Kagra (LVK) Collaboration.

• We investigate whether current and future experiments would have sufficient sensitivity required to detect SSM200308-like events.

 Distinguish PBHs from other astrophysical systems or more exotic competitors in the SSM range.

$$\Lambda = \frac{2}{3}k_2 \left(\frac{Gm}{R}\right)^{-5}$$

Tidal deformabilities for neutron stars

APIENZA

Primordial Black Holes or else? Tidal tests on subsolar gravitational-wave observations

Subsolar objects are less sensitive for EOS effects!

Assume for instance boson stars (BSs) with quartic potential [Pacilio+, 2007.05264]:

$$V\left(\left| \phi \right| \right) = \frac{\mu^2}{2} \left| \phi \right|^2 +$$

$$\frac{m}{m_B} = \frac{\sqrt{2}}{8\sqrt{\pi}} \left[-0.828 + \frac{20.99}{\log\Lambda} - \frac{99.1}{\left(\log\Lambda\right)^2} + \frac{149.7}{\left(\log\Lambda\right)^3} \right]$$

Invert relation to find:

 $\Lambda = \Lambda(m/m_B)$

- In this model, BSs exist for $m/m_B < 0.06$, which gives $\Lambda > 289$.
- A can span many orders of magnitude as the mass deviates from its maximum value (e.g., $\Lambda \approx 1.7 \times 10^6$ for $m/m_{B} = 0.02$).
- An upper bound on Λ can rule out some models!

 $\frac{\lambda}{4} |\phi|^4$

We adopt a TaylorF2 waveform [Damour+, 0010009] which includes also possible tidal disruption effects modeling:

Source ref. De Luca+, 2212.03343

Waveform modeling of SSM objects

GW phase (augmented at 5PN and 6PN) [Kidder-Will, 9211025; Wade+, 1402.5156]:

Some definitions...

$$\begin{split} \tilde{\Lambda} &= \frac{8}{13} \left[\left(1 + 7\eta - 31\eta^2 \right) \left(\Lambda_1 + \Lambda_2 \right) + \sqrt{1 - 4\eta} \left(1 + 9\eta - 11\eta^2 \right) \left(\Lambda_1 - \Lambda_2 \right) \right] \\ \delta \tilde{\Lambda} &= \frac{1}{2} \left[\sqrt{1 - 4\eta} \left(1 - \frac{13272}{1319} \eta + \frac{8944}{1319} \eta^2 \right) \left(\Lambda_1 + \Lambda_2 \right) + \left(1 - \frac{15910}{1319} \eta + \frac{32850}{1319} \eta^2 + \frac{3380}{1319} \eta^3 \right) \left(\Lambda_1 - \Lambda_2 \right) \right] \end{split}$$

Injection simulations of SSM200308-like systems

<u>PBH binary injections + recovery</u> (Bayesian inference + Fisher analysis):

Inject SSM200308 parameters + zero tides and neglect tapering $\rightarrow \Lambda = \delta \Lambda = 0$ and $\lambda_f = 1$

NS binary injections + recovery (Fisher):

Inject non-zero tides assuming SLy4 EOS \rightarrow

General requirements:

SSM constraint [Franciolini+, 2112.10660] $\leftrightarrow m_i + 3\Delta m_i < M_{\odot}$

Exclude PBH nature \leftrightarrow

$$\tilde{\Lambda} - 3\Delta \tilde{\Lambda} > 0$$
, and/or
 $\tilde{\lambda}_f + 3\Delta \tilde{\lambda}_f < 1$

 $\tilde{\Lambda} = 1.5 \cdot 10^5 \quad \delta \tilde{\Lambda} = 4.9 \cdot 10^4 \quad \tilde{\lambda}_f = 0.075$

Bayesian inference result of PBH binary injections: O3 vs ET+2CE

Fisher results of NS binary injections

Network	LVK O3	LVK O4	LVK O5	ET+2CE	
BNS SSM200308 ($\tilde{\Lambda} = 1.5 \cdot 10^5, \delta \tilde{\Lambda} = 4.9 \cdot 10^4, \tilde{\lambda}_f = 0.075$)					
SNR	7.90	12.8	22.4	398	
$\Delta m_1/m_1$	0.47	0.22	0.082	0.0017	
$\Delta m_2/m_2$	0.39	0.19	0.070	0.0015	
$\Delta ilde{\Lambda}/ ilde{\Lambda}$	0.86	0.66	0.55	0.047	
$\Delta \tilde{\lambda}_f / \tilde{\lambda}_f$	0.38	0.24	0.13	0.015	

$$\tilde{\lambda}_f + 3\Delta \tilde{\lambda}_f < 1$$

Results:

- lacksquaredetectors;
- tidal disruption is well constrained from O3 on. \bullet

Primordial Black Holes or else? Tidal tests on subsolar gravitational-wave observations

we can be certain that the binary is subsolar from O5 on; tidal deformability distiguishes PBHs from BNSs only with 3G

Exploring the Fisher parameter space: the NS binary case

- We scan the parameter space where both masses are in the range $m_1, m_2 \in [0.1; 1]$. •
- We assume optimally oriented binaries at a distance corresponding to the threshold for detection with O4 sensitivity.

Exploring the Fisher parameter space: the PBH binary case

Take-home messages and future works

Take-home messages:

- SSM binary events could be detectable starting from O4 \rightarrow very high precision with ET! lacksquare
- Effective tidal parameter will be well-constrained, at least to compare the PBH hypothesis against the subsolar NS one, or even against more exotic hypotheses.

Future works on this topic:

- Build a more accurate waveform (demanding, important effects due to the tidal disruptions); lacksquare
- Studying implications of cosmology and nuclear physics for SSM objects [Crescimbeni+, 2408.14287] lacksquaresee M. Vaglio's talk!

Thank you for your attention!

Back-up slides

Binary maximum frequency of material compact objects

A GW signal has a maximum frequency of the order of ISCO:

$$f_{\rm ISCO} = \frac{c^3}{(6^{3/2}\pi GM)} =$$

binaries of stellar objects are typically characterized by smaller maximal frequencies (hard surface, tidal disruption,...)

$$r_{T,i} = \left(\frac{2m_j}{m_i}\right)^{1/3} r_i \qquad \Longrightarrow \quad f_T = \frac{1}{\pi} \sqrt{\frac{GM}{(\max[r_{T,1}, r_{T,2}])^3}}$$

$$4.4 \,\mathrm{kHz}\left(\frac{M_{\odot}}{M}\right)$$

Binary maximum frequency of material compact objects

• White dwafts:

• Neutron stars:

$$f_{\rm max}^{\rm NS} \approx 1.4\,{\rm kHz} \left(\frac{m_{\rm NS}}{0.5M_\odot}\right)^{1/2} \left(\frac{15\,{\rm km}}{r_{\rm NS}}\right)^{3/2} \qquad \begin{array}{c} {\rm More\ accurate\ expression} \end{array}$$

Primordial Black Holes or else? Tidal tests on subsolar gravitational-wave observations

$$\begin{split} f_{\rm RO}/{\rm Hz} &= -26.9 - 35.5 \left(\frac{m_1}{M_{\odot}}\right) - 3.02 \left(\frac{m_1}{M_{\odot}}\right)^2 \\ &+ 1690 \left(\frac{m_2}{M_{\odot}}\right) - 575 \left(\frac{m_2}{M_{\odot}}\right)^2 \end{split}$$

[Bandopadhyay+, 2212.03855]

Bayesian inference vs Fisher for BPBHs: O3

INFN

SAPIENZA

Primordial Black Holes or else? Tidal tests on subsolar gravitational-wave observations

	LVK	K O3	LVK O4	LVK O5	ET+2CE
PBH SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)					
	8.	76	14.6	24.8	430
	0.	21	0.14	0.053	$6.4 \cdot 10^{-3}$
	0.	18	0.12	0.046	$5.5\cdot 10^{-3}$
	1.9	$\cdot 10^{4}$	$1.3\cdot 10^4$	$7.8\cdot 10^3$	$7.7 \cdot 10^2$
+					
nple of exclusion of BS model					
$0.69M$ $\tilde{\lambda}$ 0.164 $m_{-} > 15M$					

 $m_1 = m_2 = 0.62 M_{\odot}$ $\Lambda > 3 \cdot 10^4$ $m_B \lesssim 15 M_{\odot}$

Bayesian inference vs Fisher for BPBHs : O4

	LVK O3	LVK O4	LVK O5	ET+2CE
BH SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)				
	8.76	14.6	24.8	430
	0.21	0.14	0.053	$6.4\cdot10^{-3}$
	0.18	0.12	0.046	$5.5\cdot10^{-3}$
	$1.9\cdot 10^4$	$1.3\cdot 10^4$	$7.8\cdot 10^3$	$7.7\cdot 10^2$

Bayesian inference vs Fisher for BPBHs: O5

SAPIENZA UNIVERSITÀ DI ROMA

	LVK O3	LVK O4	LVK O5	ET+2CE	
BH SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)					
	8.76	14.6	24.8	430	
	0.21	0.14	0.053	$6.4 \cdot 10^{-3}$	
	0.18	0.12	0.046	$5.5 \cdot 10^{-3}$	
	$1.9\cdot 10^4$	$1.3\cdot 10^4$	$7.8\cdot 10^3$	$7.7\cdot 10^2$	

Bayesian inference vs Fisher for BPBHs: ET+2CE

	LVK O3	LVK O4	LVK O5	ET+2CE
PBH SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)				
	8.76	14.6	24.8	430
	0.21	0.14	0.053	$6.4 \cdot 10^{-3}$
	0.18	0.12	0.046	$5.5\cdot10^{-3}$
	$1.9\cdot 10^4$	$1.3\cdot 10^4$	$7.8\cdot 10^3$	$7.7\cdot 10^2$

Exploring the Fisher parameter space: constraints on BSs with large quartic interaction

Do we exclude BPBHs if $\Lambda=0$?

Primordial Black Holes or else? Tidal tests on subsolar gravitational-wave observations

Having Λ =0 may not exclude PBHs at all.

If a PBH presents an astrophysical environment, tidal deformabilities will be different from zero.

$$k_2 = -\frac{\epsilon}{5} \left(\frac{L}{r_s}\right)^6$$

Distinguish between BPBHs with environment and 'naked' PBHs [De Luca, Franciolini, Riotto, 2408.14207].

Source ref. lacovelli+, 2304.03160

