1st TEONGRAV international workshop on the Theory of Gravitational Waves





# Modeling the full spectrum of Gravitational waves from BNS

Rossella Gamba Rome, 20/09/2024





#### **Outline**

#### • Gravitational waves from BNS Mergers

2

- Matter effects
- Inspiral models
- Post-merger models

#### • What's next?

- Challenges
- Developments

#### Part 1: Gravitational waves from BNSs Matter effects, models and all that

#### **Phenomenology of a merger**



#### **Phenomenology of a merger**



#### **Phenomenology of a merger: GWs**



#### **Phenomenology of a merger: GWs**







**BBH** + (some kind of correction) = **BNS**?

**Corrections = Matter effects.** They are what distinguish NS from **point particles**.

- Tidal effects:
  - "Adiabatic" tidal effects  $(\Lambda_\ell, \Sigma_\ell)_{\text{[Damour1983, Flanagan+2007, Damour+2008, Vines+2010, Henry+2020, Mandal+24]}}$
  - $\circ$  "Dynamical" tidal effects  $(ar{\omega}_f)$  [Lai+1994, Hinderer+2016, Steinhoff+2016, Steinhoff+2021]
- Spin induced effects  $(C_q, C_{oct}, C_{hex}, ...)$  [Poisson1998, Krishnendu+2017]
- **Other effects**: nonlinear mode couplings, other modes resonances and excitations, crust shattering, dissipative effects ... [Ho+1999, Tsang+2013, Andersson+2017, Ripley+24, ...]

All of the above coefficients depend on the Equation of State (EOS):

 $(m, \mathrm{EOS}) 
ightarrow (\Lambda_\ell, \Sigma_\ell, \dots)$  Talk to Micaela

What we'd like:  $(m, \Lambda_{\ell}, \Sigma_{\ell}, \dots) \to \text{EOS}$ 

Various matter effects are not (entirely) independent from one-another: **quasi-universal** relations

$$\Lambda_2 \to (\Lambda_\ell, \Sigma_\ell, C_q, C_{\text{oct}}, \bar{\omega}_f, \dots)$$



$$\Psi(x) = 2\pi f t_c - \phi_c - \pi/4 + \frac{3}{128\nu} x^{-5/2} \Big[ 1 + \dots + x^2 C_q c_{MQ} + \dots + x^5 \tilde{\Lambda} c_{\Lambda} + \dots + x^8 \frac{c_{dyn}}{\Omega_{A,f}^2} + \dots \Big]$$

**0 PN** 

- Matter effects are a high-frequency correction:
  - Tidal effects are important above ~300 Hz
  - f-mode (most) relevant above 1kHz
- Current detectors are not very sensitive in those regions
  - $\rightarrow$  Hard to measure





**BBH** + (some kind of correction) = **BNS**?



*\_*14

## **Inspiral models**

#### Breakdown of the Market?

- Flagship IMR models ~ grouped into 3 families
- Pros and cons to each family

#### **NR S**urrogates

- Interpolate NR waveforms across parameter space
- Accuracy comparable to input NR
- Reasonably efficient waveform evaluation
- Limited by availability of NR
- Limited by NR duration but can hybridise with inspiral models

#### **Phenom**enological

- Analytical + NR calibration model of **GW** signal
- Extremely efficient to evaluate
- Time- and frequency-domain models available
- Limited in calibration by availability of NR
- Less fundamental harder to incorporate information

UNIVERSITY<sup>OF</sup> BIRMINGHAM

THE ROYAL SOCIETY

- The BBH situation . Hamiltonian framework for dynamics and GW signal
- Evolve system of ODEs work needed to mitigate computational cost
- Limited in calibration by availability of NR
- Natural framework for incorporating additional physics (GSF, scattering, ...)

## **Inspiral models**

#### Breakdown of the Market?

- Flagship IMR models ~ grouped into 3 families
- Pros and cons to each family



#### **Phenom**enological

- Analytical + NR calibration model of **GW** signal
- Extremely efficient to evaluate
- Time- and frequency-domain models available
- Limited in calibration by availability of NR
- Less fundamental harder to incorporate information

# The BBH Situation :

UNIVERSITY<sup>OF</sup> BIRMINGHAM

THE ROYAL SOCIETY

- Hamiltonian framework for dynamics and GW signal
- Evolve system of ODEs work needed to mitigate computational cost
- Limited in calibration by availability of NR
- Natural framework for incorporating additional physics (GSF, scattering, ...)

## **Inspiral models**

- Post Newtonian approximants (PN) [Krishnendu+2017, Henry+2020, Schmidt+2021]
  - Analytical and fast
  - Examples: TaylorF2, TaylorT4
- **Phenomenological** approximants (Phenom)

[Dietrich+2017,Kawaguchi+2018,Dietrich+2019,Gamba+23,Williams+2024,Abac+2024]

- Fits to EOB+NR hybrid waveforms
- Fast
- Examples: (any BBH inspiral model) + NRTidalv3, Kawaguchi+, PhenomGSF,...
- Effective One Body approximants (EOB) [Bini+2012, Akcay+2018, Lackey+2018, Tissino+22, Gamba+2023]
  - Semi-analytical, resummed PN + NR
  - Not-as-fast, generally, but there exist acceleration techniques (PA, SPA)
  - Examples: TEOBResumS, SEOBNRv4T (& related surrogates)

## **Inspiral models: Phenom**

Simple idea:

- Choose your target BNS waveform (EOB + NR, pure EOB, ...)
- 2. Choose your BBH baseline (EOB, NR, Phenom, NR surrogate, ...)
- 3. Separate matter contributions from BBH baseline (both phase and amplitude):

$$\begin{split} \Psi_{\rm BNS} &\sim \Psi_{\rm BBH} + \Delta \Psi_{\rm matter} \\ \Delta \Psi_{\rm matter} &\sim \Psi_{\rm BNS} - \Psi_{\rm BBH} \end{split}$$

4. Directly fit the matter contributions and Adu  $\Delta \Psi_{\text{matter}} \sim \Delta \Psi_{\text{ad.tides}} + \Delta \Psi_{\text{dyn.tides}} + \Delta \Psi_{MQ} + \dots$ 



## **Inspiral models: EOB**

Two body problem  $\rightarrow$  test particle around (deformed) Kerr. Three ingredients:

Hamiltonian

$$H_{\rm EOB} = M\sqrt{1 + 2\nu(\hat{H}_{\rm eff} - 1)},$$

$$\hat{H}_{\rm eff} = \sqrt{p_{r_*}^2 + A(r)\left(1 + \frac{p_{\varphi}^2}{r^2} + 2\nu(4 - 3\nu)\frac{p_{r_*}^4}{r^2}\right)}$$

Waveform

$$\begin{aligned} \text{Waveform} \qquad & h_{\ell m} = h_{\ell m}^{(N,\epsilon)} \hat{S}_{\text{eff}}^{(\epsilon)} \hat{h}_{\ell m}^{\text{tail}} f_{\ell m} \hat{h}_{\ell m}^{\text{NQC}} \\ & h_{\ell m} = h_{\ell m}^{0} + h_{\ell m}^{T} = h_{\ell m}^{\text{Newt}} (\hat{h}_{\ell m}^{0} + \hat{h}_{\ell m}^{T}) \\ & h_{\ell m} = \hat{F}_{\varphi} , \\ \text{Radiation Reaction} \\ & \dot{p}_{r_{*}} = \sqrt{\frac{A}{B}} \left( -\partial_{r} \hat{H}_{\text{EOB}} + \hat{\mathcal{F}}_{r} \right) \end{aligned}$$



#### Inspiral models: in a nutshell

|                     | PN                    | TEOBResumS                                                                                                                                        | SEOBNRv4T                                                        | PhenomGSF                                                                 | PhenomNRTv3                                                                                            |
|---------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Adiabatic tides     | Cons.3PN<br>Diss. 2PN | Cons. 2.5 PN<br>Diss. 2PN                                                                                                                         | Cons. 2.5 PN                                                     | 2.5PN                                                                     | 2.5PN                                                                                                  |
| Dynamic tides       | Yes                   | yes                                                                                                                                               | yes                                                              | no(t yet)                                                                 | yes                                                                                                    |
| self-spin           | NNLO                  | NNLO (resummed)                                                                                                                                   | NNLO<br>(resummed)                                               | no(t yet)                                                                 | NNLO (PN)                                                                                              |
| Additional<br>notes | Many more<br>effects  | GSF-resummation,<br>ell=2,,8 electric<br>contributions; ell=2<br>magnetic<br>contributions;<br>Higher modes in<br>wf; eccentricity;<br>precession | BBH NQC<br>corrections;<br>ell=2,3<br>electric<br>contributions; | Fits of phase<br>calibrated to<br>TEOBResumS,<br>residual w.r.t.<br>7.5PN | Fits for phase and<br>amplitude<br>calibrated to<br>EOBNR hybrids,<br>Padé resummed,<br>55 simulations |

/20

#### **Inspiral models: performance**



#### **Inspiral models: performance**



| Tides                                                                                                                                        | Mass<br>ratio   | Spins | Error @ merger    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------------------|--|--|--|
| Moderate<br>(<1000)                                                                                                                          | equal<br>mass   | X     | < 1 rad (0.2-0.5) |  |  |  |
| Large                                                                                                                                        | equal<br>mass   | X     | ~ 1 rad           |  |  |  |
| Moderate<br>(<1000)                                                                                                                          | Unequal<br>mass | X     | ~ 1 rad (0.5-1)   |  |  |  |
| Large                                                                                                                                        | Unequal<br>mass | X     | > 1 rad           |  |  |  |
| Madarata                                                                                                                                     | Fault           |       | > 1 red lorge for |  |  |  |
| <ul> <li>Models perform the worst when for large tidal parameters/large spins</li> <li>Typical NR error ~1 rad at merger (large!)</li> </ul> |                 |       |                   |  |  |  |

#### **Phenomenology of a merger: GWs**



#### **Post-merger: common features**

Very high frequency emission (> 1kHz)  $\rightarrow$  **Even harder to measure than inspiral!** Additionally: complicated post-Merger (B fields, neutrinos, hydro, ...)



 $\rightarrow$  Look for robust, common features and model those

#### **Post-merger: quasi-universality**



25

## **Post-merger: "models"**

- Unmodeled [Chatziioannou+2017, Wijngaarden+22]
  - Detects PM even with (very) low SNRs
  - Identifies unexpected features in the waveform
  - Cannot directly be joined to inspiral WFs
- Phenomenological models [Tsang+19, Breschi+19, Soultanis+2021, Breschi+22]
  - Models the most robust features of the PM (beyond f2)
  - Usually, lower fitting factors than unmodeled
  - Can be immediately joined to inspiral waveforms
- NR-based [Clark+2015, Easter+2018]
  - Statistical representation of NR waveforms (reduced basis, PCA)...
  - Good fitting factors w/ NR
  - Retains all of NR uncertainty, less "flexible" than phenomenological wfs

#### **Post-merger: performance**





#### **Post-merger: performance**



#### **Part 2: What's next?** Future developments and challenges

#### **Future detectors**



|             | BNS     |                     |       | BBH     |                     |        |
|-------------|---------|---------------------|-------|---------|---------------------|--------|
| Cosmic rate | 4       | $4.7 \times 10^{5}$ |       |         | $1.2 \times 10^{5}$ |        |
| SNR $\rho$  | ≥ 10    | ≥ 30                | ≥ 100 | ≥ 10    | ≥ 30                | ≥ 100  |
| HLVKI+      | 190     | 6                   | 1     | 6,100   | 240                 | e      |
| VK+HLIv     | 2,000   | 71                  | 2     | 33,000  | 2,900               | 74     |
| HLKI+E      | 41,000  | 1,700               | 45    | 97,000  | 31,000              | 2,100  |
| VKI+C       | 110,000 | 6,000               | 160   | 110,000 | 53,000              | 6,400  |
| KI+EC       | 160,000 | 9,400               | 250   | 120,000 | 69,000              | 9,500  |
| ECS         | 240,000 | 20,000              | 550   | 120,000 | 87,000              | 17,000 |
|             |         |                     |       |         |                     |        |

Next gen: large sensitivity improvement:

- Low frequency → improved masses measurement
- High frequency → improved matter effects measurement

Few very loud signals (SNR > 100)

- Some loud signals also with current gen!
- $\rightarrow$  What does this mean for our models?

#### **Waveform systematics**

"What's the biggest challenge for numerical relativity and waveform modeling for next generation detectors?"



#### **Waveform systematics**

and injected Lambda

recovered

Relative difference between



# Lambdas "Cumulative" difference between recovered and injected

*\_*32

#### **Waveform systematics**

Relative difference between



#### How do you beat systematics?

• "Marginalize" over model uncertainty, at the expense of measurement precision

#### How do you beat systematics?

- "Marginalize" over model uncertainty, at the expense of measurement precision [Read+23]
  - EOB and Phenom: sample over NR-fits error during PE
  - Do the same whenever quasi-universal relations are employed
  - Hypermodel approach [Puecher+24]

#### How do you beat systematics?

- "Marginalize" over model uncertainty, at the expense of measurement precision [Read+23]
  - EOB and Phenom: sample over NR-fits error during PE
  - Do the same whenever quasi-universal relations are employed
  - Hypermodel approach [Puecher+24]
- "Just" build better models

• Inspiral:

- Inspiral:
  - Folding in some information from NR in EOB models



- Inspiral:
  - Folding in some information from NR in EOB models
  - Include some of the recent 3PN tidal effect terms, **not just circular**[Mandal+24]

| $ \widetilde{\mathcal{H}}_{\rm 3PN}^{\rm AT} = \widetilde{\lambda}_{(1)} \left\{ \widetilde{L}^6 \left( -\frac{45\nu^3}{32\widetilde{r}^{12}} - \frac{15\nu^2}{4\widetilde{r}^{12}} - \frac{33\nu}{32\widetilde{r}^{12}} \right) + \widetilde{L}^4 \left( \widetilde{p}_r^2 \left( -\frac{189\nu^3}{32\widetilde{r}^{10}} + \frac{99\nu^2}{8\widetilde{r}^{10}} + \frac{711\nu}{32\widetilde{r}^{10}} \right) - \frac{9\nu^2}{\widetilde{r}^{11}} + \frac{15\nu}{4\widetilde{r}^{11}} \right) \right\} $ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $+  \widetilde{L}^2 \left[ \widetilde{p}_r^2 \left( -\frac{9\nu^3}{2\widetilde{r}^9} - \frac{2775\nu^2}{16\widetilde{r}^9} - \frac{72\nu}{\widetilde{r}^9} \right) + \widetilde{p}_r^4 \left( -\frac{99\nu^3}{32\widetilde{r}^8} + \frac{108\nu^2}{\widetilde{r}^8} - \frac{1431\nu}{32\widetilde{r}^8} \right) \right.$                                                                                                                                                                                 |
| $+\frac{3(117600\ \bar{\kappa}_{(1)}+1584771)\nu}{19600\tilde{r}^{10}}+\frac{93\nu^2}{2\tilde{r}^{10}}\biggr]+\tilde{p}_r^2\left(\frac{9993\nu^2}{56\tilde{r}^8}-\frac{3(117600\ \bar{\kappa}_{(1)}+626121)\nu}{9800\tilde{r}^8}\right)$                                                                                                                                                                                                                                                                 |
| $+  \widetilde{p}_r^4 \left( -\frac{45\nu^3}{\widetilde{r}^7} - \frac{729\nu^2}{8\widetilde{r}^7} + \frac{777\nu}{16\widetilde{r}^7} \right) +  \widetilde{p}_r^6 \left( \frac{1485\nu^3}{32\widetilde{r}^6} - \frac{465\nu^2}{8\widetilde{r}^6} + \frac{465\nu}{32\widetilde{r}^6} \right) - \frac{3(29400\bar{\kappa}_{(1)} + 429119)\nu}{9800\widetilde{r}^9} \\$                                                                                                                                     |
| $+\frac{1}{q}\Bigg[\widetilde{L}^6\left(-\frac{15\nu^3}{8\widetilde{r}^{12}}-\frac{75\nu^2}{8\widetilde{r}^{12}}-\frac{99\nu}{16\widetilde{r}^{12}}+\frac{33}{32\widetilde{r}^{12}}\right)+\widetilde{L}^4\left(\widetilde{p}_r^2\left(-\frac{9\nu^3}{\widetilde{r}^{10}}-\frac{171\nu^2}{8\widetilde{r}^{10}}-\frac{27\nu}{16\widetilde{r}^{10}}+\frac{9}{32\widetilde{r}^{10}}\right)$                                                                                                                 |
| $+\frac{273\nu^2}{16\tilde{r}^{511}}+\frac{1545\nu}{16\tilde{r}^{511}}+\frac{495}{16\tilde{r}^{511}}\Big)+\tilde{L}^2\left(\tilde{p}_r^4\left(-\frac{99\nu^3}{8\tilde{r}^8}+\frac{315\nu^2}{8\tilde{r}^8}+\frac{27\nu}{16\tilde{r}^8}-\frac{9}{32\tilde{r}^8}\right)$                                                                                                                                                                                                                                    |
| $\left. + \widetilde{p}_r^2 \left( -\frac{9\nu^3}{2\widetilde{r}^9} - \frac{831\nu^2}{16\widetilde{r}^9} + \frac{567\nu}{8\widetilde{r}^9} - \frac{99}{8\widetilde{r}^9} \right) + \frac{867\nu^2}{28\widetilde{r}^{10}} + \frac{3\left(8384 + 63\pi^2\right)\nu}{512\widetilde{r}^{10}} - \frac{1335}{8\widetilde{r}^{10}} \right) \right.$                                                                                                                                                             |
| $+ \tilde{p}_r^2 \left( \frac{2097\nu^2}{16\tilde{r}^8} - \frac{3\left(20576 + 63\pi^2\right)\nu}{256\tilde{r}^8} + \frac{261}{8\tilde{r}^8} \right) + \tilde{p}_r^4 \left( -\frac{45\nu^3}{\tilde{r}^7} - \frac{105\nu^2}{8\tilde{r}^7} - \frac{327\nu}{16\tilde{r}^7} + \frac{99}{16\tilde{r}^7} \right)$                                                                                                                                                                                              |
| $\left. + \widetilde{p}_{r}^{6} \left( \frac{99\nu^{3}}{4\widetilde{r}^{6}} - \frac{69\nu^{2}}{8\widetilde{r}^{6}} - \frac{45\nu}{16\widetilde{r}^{6}} + \frac{15}{32\widetilde{r}^{6}} \right) - \frac{1599\nu^{2}}{56\widetilde{r}^{9}} + \frac{\left(6376 - 945\pi^{2}\right)\nu}{64\widetilde{r}^{9}} + \frac{519}{4\widetilde{r}^{9}} \right] \right\}$                                                                                                                                             |
| $+ (1 \leftrightarrow 2). \tag{6.4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

- Inspiral:
  - Folding in some information from NR in EOB models
  - Include some of the recent 3PN tidal effect terms, **not just circular**[Mandal+24]
  - Study the effect of eccentricity: dynamical tidal effects → excitations of the modes after close passages [Hang+24, Takatsi+24]



- Inspiral:
  - Folding in some information from NR in EOB models
  - Include some of the recent 3PN tidal effect terms, **not just circular**[Mandal+24]
  - Study the effect of eccentricity: dynamical tidal effects → excitations of the modes after close passages [Hang+24. Takatsi+24]
  - Spin-induced effects: spin-tidal couplings?[Abdelsahin+18,Castro+22]



- Inspiral:
  - Folding in some information from NR in EOB models
  - Include some of the recent 3PN tidal effect terms, **not just circular**[Mandal+24]
  - Study the effect of eccentricity: dynamical tidal effects → excitations of the modes after close passages [Hang+24, Takatsi+24]
  - Spin-induced effects: spin-tidal couplings?[Abdelsahin+18,Castro+22]
- Post-merger:
  - Numerical Relativity: understand muons, Pions,B-fields, neutrinos, thermal effectsresolution,... [Gieg+24, Pajkos+24]



#### **Conclusions**

- Modeling the inspiral is """easy""", but we need to do it extremely well to avoid systematics
- Modeling the post-merger is harder, current models capture just few features
- NR is going to be fundamental to model the beyond-contact regime

#### Backup slides

#### **Next Gen detectors: post-merger**

## Quasi-universality breaking: $\rightarrow$ phase transitions, thermal effects, magnetic fields, muons, ...?



#### **Current GW observations**

Confidently detected systems with at least one NS:

| Name     | Kind | SNR | Tides?                 | EM? |
|----------|------|-----|------------------------|-----|
| GW170817 | BNS  | ~30 | Upper limits           |     |
| GW190425 | BNS  | ~14 | (weak) upper<br>limits | ×   |
| GW200105 | BHNS | ~14 | Uninformative          | ×   |
| GW200115 | BHNS | ~12 | Uninformative          | ×   |

#### **Current GW observations**

From GW alone (using a spectral parameterization of the EOS):



#### **Current EOS constraints: GW + KN (+ NICER)**

[Breschi+24]



 $R_{1.4M_{\odot}}$  between 12-14 km or 11-13 km, depending on NICER

#### Current EOS constraints: GW + KN (+ NICER +...)



 Set A: Chiral EFT, pQCD, radio timing, NICER, GW170817

Set B: Heavy-Ion collisions, qLMXBe, Black Widow, GW170817 + AT2017gfo + GRB170817A

Set C: PREX, CREX, Burster, Hess, GW190425, GRB211211A, GW170817 (postmerger)

#### **Next Gen detectors: inspiral**

- Generate fake data: GW injection & recovery with ET
- SNR ~ 540 • q = 1.5, M = 2.8 Prior SFHo  $M_{\text{max}}^{\text{TOV}} \ge 2.09$ MPA1  $\circ \Lambda_1 = 600$ тма GW (next gen) MS1  $\circ$   $\Lambda_2$  =1000 ENG • EOB model + ROQ APR4 ---- NL3 PSR 10952-0607 • Single tidal parameters meas ₩<sup>2</sup>  $\begin{tabular}{l} \circ & \Lambda_1 = 600^{+130}_{-160} \\ \circ & \Lambda_2 = 970^{+730}_{-600} \end{tabular} \end{tabular}$ • Very tight constraints!  $\pm 200m_{1}$ 10 12 14 16

/50

R[km]

#### **Next Gen detectors: post-merger**

Post-merger detectable (on its own) if SNR(PM) > 8  $\rightarrow$  SNR(inspiral) O(100). Constraints on the "max TOV" properties of the (cold) EOS



## NR simulations: physics & accuracy (PM)



HY = pure hydro LK = Leakage VM0 = Viscosity + M0  $\Delta x_{LR} \approx 247 \text{ m}, \Delta x_{SR} \approx 185 \text{ m}, \Delta x_{HR} \approx 123 \text{ m}.$ 

- Up to merger: little to no difference due to microphysics
- "Early" times: small differences
- "Late" times: large differences, especially for SR/HR simulations

52

#### **Post-merger detectability**



- Post-merger only
- Simulated ET signal, analyzed with NRPMw
- Locating the detector in Virgo's place (with typical triangular configuration)
- 10 different noise realizations

#### Current EOS constraints: GW + KN (+ NICER)

"Joint and coherent" analysis of GW170817 + AT2017gfo:

• Joint likelihood

$$p(\boldsymbol{d}_{gw}, \boldsymbol{d}_{kn} | \boldsymbol{\theta}_{gw}, \boldsymbol{\theta}_{kn}) = p(\boldsymbol{d}_{gw} | \boldsymbol{\theta}_{gw}) p(\boldsymbol{d}_{kn} | \boldsymbol{\theta}_{kn})$$

- Common parameters:
  - Luminosity distance
  - merger time
  - (inclination, if anisotropic model)
  - NR fits: link some KN parameters with GW ones

$$M_{\rm ej}^d, v^d, m_{\rm disk}$$

 Re-sampling of the posterior to determine EOS from a prior set of ~10M EOSs, adding also NICER results

#### Accuracy requirements (on the back of an envelope)

[Puecher+22]

-\* • NO-PM 225Mpc ---NO-PM 135 Mpc NO-PM 68Mpc ..... -\* - QU-PM 225Mpc ..... QU-PM 68Mpc Zero noise -  $Source2_{[QU-PM]}$ 2.00 600 1.75 500 1.50  $\tilde{V}_{00000}^{400}$ 1.25 de la 1.00 0.75 200 0.50 100 -0.25 20 120 40 60 80 100 0 ΔÃ

 $\Delta \tilde{\Lambda} = 100 \rightarrow \Delta \phi \sim 2 \text{rad}$  $\Delta \tilde{\Lambda} = 25 \rightarrow \Delta \phi \sim 0.5 \text{rad}$