BH merger population

making sense of a jumble of everything

Martyna Chruślińska

(read: Hroo-shlin-ska)

MPA fellow

Max Planck Institute for Astrophysics European Southern Observatory

ESO fellow

This talk: how do we go about extracting astrophysical information from the **population**

This talk: how do we go about extracting astrophysical information from the **population**

not this: characterising the observed population

BH merger population properties:

Focus on best constrained: merger rate & mass distribution (+evolution with redshift) (also: effective spins, mass ratio, correlations between the properties)

This talk: how do we go about extracting astrophysical information from the **population**

- ← how did this population come to be?
 ← what can it tell us about
 - **the astrophysical processes** ?

BH merger population properties:

Focus on best constrained: merger rate & mass distribution (+evolution with redshift) (also: effective spins, mass ratio, correlations between the properties)

order-of-magnitude relative local rates (empirical)

order-of-magnitude relative local rates (empirical)

order-of-magnitude relative local rates (empirical)

LIGO-Virgo-KAGRA Black Holes

progenitor stars formed somewhere in the Universe

LIGO-Virgo-KAGRA Black Holes

rate/SFRD varies over the cosmic history

LIGO-Virgo-KAGRA Black Holes

GW-observed population

different formation times, chemical compositions

LIGO-Virgo-KAGRA Black Holes

GW-observed population

different formation times, chemical compositions, environments

*1 pc = 3 × 10¹³ km

*1 pc = 3 × 10¹³ km

*1 pc = 3 × 10¹³ km

stars expand ! ~1000 Rsun

"galactic field"

isolated (stars, binaries/multiples) evolution

some interaction(s)

[exchange of mass & angular momentum]

<10 Rsun

Environment → GW source "formation channels"

Which formation path?

- → sensitive to stellar mass and metallicity
- → many layers of uncertainties

(mixing, winds, nuclear & core-collapse & binary physics, what massive stars at low metallicity actually do?)

"galactic field"

isolated (stars, binaries/multiples) evolution

Environment \rightarrow GW source "formation channels"

Environment \rightarrow GW source "formation channels"

Environment \rightarrow GW source "formation channels"

LIGO-Virgo-KAGRA Black Holes

Dense environments over the cosmic history?

Dense environments \rightarrow when and how they are formed?

Dense environments \rightarrow when and how they are formed?

Dense environments \rightarrow when and how they are formed?

Lada & Lada 2003, Baumgardt+03, Lamers+05, El-Badry+13, Kruijssen+15, Guszejnov+17, Reina-Campos+17..

From star formation to BH/NS merger population

From star formation to BH/NS merger population

number & birth chemical composition of stars?

evolution

clusters

Klencki+18 (in GW context)

birth environment?

star forming conditions and initial cluster properties: Adamo+20, Krumholz+19, Grudic+23 (obs./theory) Antonini & Gieles'20, Fishbach & Fragione'23, Bruel+24 (initial cluster properties & GW)

BH/NS merger formation channels overview: e.g. Barack+19, Mandel & Broekgaarden 2022

Constraints are tight compared to predictions.

Constraints are tight compared to predictions.

Interpretation is unclear: degeneracies

e.g. Belczynski et al. 2010, Dominik et al. 2012, Eldridge & Stanway 2016, Stevenson et al. 2017, Klencki et al. 2018, Giacobbo et al. 2018, Neijssel+19, Chruslinska+19, Santoliquido+21 Broekgaarden+22, Iorio+23 ...

(!) low metallicity preference (!)

* "low" but not *extremely* low, definitely not "pop III" low

log_10(formation efficiency [M \odot^{-1}])

e.g. Belczynski et al. 2010, Dominik et al. 2012.

Eldridge & Stanway 2016,

Stevenson et al. 2017,

Giacobbo et al. 2018,

Klencki et al. 2018.

Neijssel+19,

lorio+23 ...

Chruslinska+19, Santoliguido+21

Broekgaarden+22,

 binary population synthesis models from
Broekgaarden+22

log₁₀(metallicity relative to solar)

Rate of star formation in the history of the Universe

Literature assumptions

Rate of star formation at low metallicity in the history of the Universe

Literature assumptions

Rate of star formation at low metallicity in the history of the Universe

Primary BH mass distribution of z~0 BH+BH mergers

Primary BH mass distribution of z~0 BH+BH mergers

Primary BH mass distribution of z~0 BH+BH mergers

...very different origin of the observed BH mergers!

Literature assumptions

"low metallicity" cosmic star formation history

Constraints

"low metallicity" cosmic star formation history

Star formation history at low metallicity:

Star formation history at low metallicity & high redshift

"low mass galaxies are common but faint"

"low mass galaxies are common but **faint**" (for electromagnetic studies, not for GW!)

Side note: effect on BH mass distribution

(example at redshift=0, pop.synth. model from van Son+23)

 \rightarrow see also Van Son et al.+MCh (2022)

Side note: effect on BH mass distribution

 \rightarrow see also Van Son et al.+MCh (2022)

What we actually mean by "metallicity" is important

What we actually mean by "metallicity" is important

What we actually mean by "metallicity" is important

Workaround:

Workaround:

Method to relate *iron* to available star-forming galaxy properties

→ Chruslinska, Pakmor, Matthee, Matsuno (2024)

simulated Universe

old nearby stars enrichment by stellar sources

redshift (cosmic time) dimension is important for making sense of a jumble of everything

 $\sim m^{e_{5509}}$ number, properties (chemical composition!), environment of BH/NS progenitors \rightarrow evolve over the cosmic history

 \rightarrow necessary for population interpretation/modelling

GW: low metallicity regime important (!)

BH mergers know about low metallicity regime (!)

[early (iron) enrichment history; properties of low-mass galaxies in the reionisation epoch population III; lives, deaths and interactions of massive stars at low metallicity]

Thank you !

Martyna Chruślińska

(read: Hroo-shlin-ska)

MPA fellow F

Max Planck Institute for Astrophysics

European Southern Observatory

Metallicity-dependent cosmic star formation history

- necessary part of the GW population interpretation & modelling
- may dominate uncertainty of BBH mergers vs redshift
- constraints can be derived (statistical galaxy properties) but (will remain) challenging at "low metallicity" for EM studies (even at low redshift!)
- + metallicity mostly probed by oxygen (workaround -> [O/Fe] sSFR relation)
- GW observations can provide **complementary constraints** [early (iron) enrichment history, properties of low-mass galaxies in the reionisation epoch]
- different method, biases and systematics

Growing population of stellar-mass (EM) BHs in binaries of all shapes and sizes

- \rightarrow different selection effects!
- \rightarrow is mass distribution consistent with GW?
- → can we constrain natal kicks?
- \rightarrow testing massive BH \leftrightarrow low metallicity star link

Long GRBs, H-poor superluminous SNe (observed host galaxies)

BH+BH mergers (isolated channels, theoretical)

sketch, for comparison of different evolutionary models see e.g. Chruslinska+19, Santoliquido+21, Broekgaarden+22

Ultraluminous X-ray sources, High mass X-ray binaries (observed host galaxies & X-ray luminosity functions)

→ Fragos+13,Fornasini+20,Lehmer+22

(Which?) Mass – metallicity relation

Different ways to translate observed line ratios to metallicity (see recent reviews Maiolino & Mannucci '19, Kewley+19)

review Maiolino & Mannucci (2019) comparison of the z~0 relations

SFR of such galaxies?

How common are such galaxies?

Common.

Comparison with the cosmological simulations of galaxy evolution

Figure 2. Percentage of stellar mass with metallicity smaller than $0.1 Z_{\odot}$ vs. stellar mass with metallicity larger than Z_{\odot} for all stars formed after z = 10 (red), z = 3 (green), and z = 0.5 (blue). Data is shown for the most

