PROBING ULTRA-DENSE MATTER WITH gravitational waves

Micaela Oertel

micaela.oertel@astro.unistra.fr

[O](https://astro.unistra.fr)bservatoire astronomique de Strasbourg CNRS / Université de Strasbourg

TEONGRAV workshop, Sapienza University, Rome, September 16-20, 2024

Based on work with many collaborators, special thanks to P. Char, A. Fantina, C. Mondal, F. Gulminelli, J. Novak, A.R. Raduta, L. Suleiman

Strongly interacting matter

Neutron star matter is strongly interacting matter under extreme conditions not accessible in terrestrial laboratories (density, asymmetry) and non-perturbative many-body problem from the theory side Observatoire astronomique

4日 8

de Strasbourg | ObAS

MATTER COMPOSITION AND EQUATION OF STATE

CCSN, binary mergers and neutron stars

 \rightarrow Domains in density, temperature and asymetry :

Different regimes (strongly interacting !) :

- Very low densities and temperatures :
	- \triangleright dilute gas of non-interacting nuclei \rightarrow nuclear statistical equilibrium (NSE)
- Intermediate densities and low temperatures :
	- ► gas (crystal) of interacting nuclei surrounded by free nucleons \rightarrow beyond NSE
- High densities and temperatures :
	- \blacktriangleright nuclei dissolve
		- \rightarrow strongly interacting (homogeneous) hadronic matter
	- \triangleright potentially transition to a quark gluon plasma
- Matter not necessarily in chemical equilibrium (nuclei/neutrinos) observatoire astronomique

イロト イ押 トイヨト イヨ

de Strasbourg | ObAS

EQUATION OF STATE

Different philosophy

MICROSCOPIC MODELLING

- Phenomenological or ab intio modelling
- **.** Direct connection with nuclear physics information
- Predicts EoS and composition, access to reaction rates
- Many sources of (systematic) uncertainties
- Meta-modelling approaches allow for larger flexibility/incorporation of constraints

(NON-)PARAMETRIC EOS

- Piecwise polytropes, sound speed representation, Gaussian processes etc
- **•** Large flexibility, fast evaluation and easy to handle
- No ad hoc assumptions on any underlying physics
- No access to composition
- No relation to non-equilibrium processes

Composition at high densities/temperatures

Hadronic degrees of freedom

- Example : Hyperons can appear if the chemical potential is high enough to make conversion $N \to Y$ energetically favorable
- At onset density : smooth transition or first order phase transition
- **•** Enhanced production at finite temperature in merger remnant/CCSN
- There can be others : Δ -resonances, remnant/CCSN $\overline{O_0^{\text{th}}}$
There can be others : Δ -resonances, pion/kaon condensates

[MO+2016]

4 伺 ▶

4 0 8

Composition at high densities/temperatures Quark matter

- Hadron-quark phase transition possible in the NS core/PNS/merger remnant
- Possibly additional superconducting phase transitions in quark matter core
- Possible quarkyonic phase
- New degrees of freedom \rightarrow impact on EoS
- Cold matter in β -equilibrium : phase transition \rightarrow jump in (energy) density

Constraints from nuclear physics

EXPERIMENTS

• Symmetric nuclear matter (i.e. $n_n = n_p$) : minimum at saturation density \rightarrow Taylor expansion

$$
E(n_B, \beta) = E_b + \frac{1}{18}Kx^2 + \frac{1}{162}K'x^3
$$

$$
+\beta^2(J + \frac{1}{3}Lx + \frac{1}{18}K_{sym}x^2)
$$

Coefficients extracted from nuclear experiments

(Lattimer & Lim 2013, MO+ 2017, . . .)

- Nuclear masses (binding energies) for many nuclei close to stability
- Data from heavy ion collisions (flow constraint, meson production, . . .)
- Data on nucleon-nucleon interaction fixing startpoint of many-body calculations

← ロ ▶ → イ 何 →

 QQ

CONSTRAINTS FROM NUCLEAR PHYSICS **THEORY**

- Low density neutron matter : different ab initio approaches (Monte-Carlo simulations, EFT approaches) the different results agree fairly well
- Uncertainty quantification within χ EFT approaches [Hebeler+2010, Drischler+2016,Huth+2021,. . .]

[Koehn+2024]

- Symmetric nuclear matter : difficult for ab initio calculations and large uncertainties
- A few ab initio calculations at finite temperature
- Perturbative QCD at ultra-high densities

 \leftarrow \equiv \rightarrow \rightarrow \equiv \rightarrow \equiv \rightarrow

[Komoltsev+2021]

On the astrophysical side

PULSAR OBSERVATIONS

- Observed masses in binary systems (NS-NS, NS-WD, X -ray binaries)
	- \triangleright Most precise ones from NS-NS binaries
	- \triangleright Massive ones \rightarrow constraints on core composition/EoS
- Prospects for asteroseismology, moment of interia, rotation frequencies, cooling,

[ComPOSE[, courtesy L. Suleiman\]](https://compose.onspm.fr/resources)

. . .

- Radius estimates from x -ray observations
	- \blacktriangleright Radii from different types of objects, consensus on radius of a fiducial $M = 1.4 M_{\odot}$ star 10-15 km
	- \triangleright NICER results gave for the first time mass and radius of the same star

イロト イ押ト イヨト イ

[[]Miller+ 2021]

On the astrophysical side

GRAVITATIONAL WAVES

- GW170817 : first detection of a NS-NS merger with LIGO/Virgo detectors
- **o** Information from different phases
	- \blacktriangleright Inspiral \rightarrow masses of objects
	- \blacktriangleright Late inspiral \rightarrow tidal deformability Λ

[Metzger 2019]

- Post merger GW emission not yet detected but in reach for 3rd generation detectors
- \blacktriangleright Electromagnetic counterpart with information about ejecta properties, kilonova, . . .
- What can we learn from future observations?

POST-MERGER PHASE

THERMAL AND OUT OF EQUILIBIUM EFFECTS?

- Thermal effects in the EoS dominated by effective mass [Constantinou+2014,2015,Raduta+2024]
- Impact of effective mass on PNS [Schneider+2019,2020,Yasin+2020] and merger remnant

[Fields+2023,Miravet-Tenes+2023]

• In BNS remnant potentially detectable with 3rd generation detectors [Raithel+2024]

[Raduta+2024]

- Shift in peak frequency due to different treatment of weak reactions [Hammond+2023]
- \bullet Impact of muons $[Gieg+2024, Loffredo+2022]$ and pions on the dynamics [Vijayan+2023,Pajkos+2024]

← ロ ▶ → イ 何 →

POST-MERGER PHASE

CAN WE DETECT A PHASE TRANSITION?

- **Q** Onset with smooth transition
	- \blacktriangleright Reduced thermal pressure in presence of additional degrees of freedom \rightarrow shift in postmerger frequencies [Blacker+2023]
- First order phase transition
	- \triangleright Very strong phase transition with no stable hybrid NS [Most+2018, Ecker+2019, ...]
		- \rightarrow almost immediate collapse to BH at onset of phase transition
		- \rightarrow almost no identifiable signal

- \triangleright Strong phase transition with stable hybrid NS and considerable quark core in merger remnant [Bauswein+2019,Most+2019,Weih+2020]
	- \rightarrow Oscillations frequencies show imprint
	- \rightarrow Clear signal of phase transition
- \triangleright Smooth transition leads to softening of EoS, potentially distinguishable
- \blacktriangleright Presence of hyperons impact thermal effects and peak frequency [Blaskenvired] astronomique

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

de Strasbourg | ObAS

Nuclear meta-modelling appoach

Idea :

use a flexible parameterisation which allows to incorporate nuclear and astrophysics information

- Original version based on Taylor expansion of symmetric NM Margueron+2018] varying NMPs
- Consistent crust-core matching DinhThi+2021,Davis+2024]
- Filters from χ EFT, nuclear masses, M_{max} , GW170817
- **Many versions developed, similar predictions** [Chatterjee+,Beznogov&

Raduta,Char+2023,Scurto+2024,Somasundaram+ . . .]

[Char+2023]

◂◻▸ ◂⁄⊓ ▸

NS EoS from inspiral phase ?

• Matter not considerably heated up before merger

 \rightarrow NS radius and cold β -equilibrated EoS

- Meta-modelling approach to nuclear matter $+$ simulated events with FT
- NS EoS can be determined very precisely with 3rd generation detectors
- Combined MM analysis frameworks constructed [Breschi+2024,Pang+2022]

[Iacovelli+2023]

B

- CUTER tool for crust reconstruction available : <https://zenodo.org/doi/10.5281/zenodo.10781538>
- Uncertainties from waveform modelling and degeneracies with modified gravity/BSM Observatoire astronomique

de Strasbourg | ObAS

NS EoS from inspiral phase ?

• Matter not considerably heated up before merger

 \rightarrow NS radius and cold β -equilibrated EoS

- NS EoS can be determined very precisely with 3rd generation detectors
- Unique vs unified crust uncertainties of same order [Gamba+202,Davis+2024]
- Combined MM analysis frameworks constructed [Breschi+2024,Pang+2022]
	- CUTER tool for crust reconstruction available : <https://zenodo.org/doi/10.5281/zenodo.10781538>
	- Uncertainties from waveform modelling and degeneracies with modified gravity/BSM

[Davis+2024]

Observatoire astronomique de Strasbourg | ObAS

Nuclear properties and matter composition ?

• But : no information a priori about composition in absence of a phase transition

[Mondal& Gulminelli 2021, Iacovelli+2023, Imam+2023]

Reason is that only β -equilibrated EoS determined Additional information on symmetric matter needed

Can we detect a phase transition with 3rd generation detectors ? Depends on onset density, masses, distance, ...

[Sieniawska+2018, Tews+2018, Montana+2018, Han+2018, Christian+2018. . .]

[Iacovelli+2023]

DETECTABILITY OF A PT DURING BNS INSPIRAL

SETUP OF THE STUDY

- Metamodel approach to nuclear matter (function of NMPs+ consistent CLDM crust) [Dinh Thi+2021] and quark matter (constant sound speed) [Mondal+2023]
- Injected EoS chosen within the ranges covered
- Three possible PT onset densities \blacksquare
- Simulate observations with 3rd generation detector network ($ET + 2CE$)
	- \triangleright Detector response estimated using Fisher matrix formalism within GWBENCH [Borhanian2021]
	- \blacktriangleright Fixing spins and inclination, varying distance and two component masses
	- \blacktriangleright $\tilde{\Lambda}$ computed from injected EoS and m_i

DETECTABILITY DURING BNS INSPIRAL

Bayesian analysis with one loud event

- \bullet 450 simulated events (distance, component masses, injected EoS)
	- \blacktriangleright Mass ratio has little effect
	- \blacktriangleright Higher chirp mass can make it easier to distinguish
	- \blacktriangleright The smaller the distance the easier
	- \triangleright A high-density PT difficult to distinguish

- Possible to identify a strong PT with an early (low density) onset, high density onset masked [see also Tan+2022,Mroczek+2023]
- Analysis with cumulation of events to be done

Summary and outlook

COLD AND β -EQUILIBRATED **MATTER**

- Advanced and 3rd generation GW decetors together with other observational projects underway or planned (NICER, SKA and precursors, . . .) will pin down precisely the NS EoS
- Low density PT probably identifiable, but β -equilbrated EoS alone not sufficient to pin down composition and nuclear model

[European project for a ground-based 3rd generation GW detector]

Summary and outlook

(Hot) matter with different compositions

- GW from BNS post-merger phase in reach for 3rd generation detectors
- PNS oscillations from next galactic supernova combined with neutrinos (Super/Hyper-Kamiokande, . . .)
- Nuclear physics experiments (HIC, . . .) for more symmetric matter

 \rightarrow need to combine all this information to understand the phase diagram of strongly interacting matter

