1st TEONGRAV international workshop on the

September 16-20 2024

SAPIENZA UNIVERSITÀ DI ROMA

the origin and growth of early supermassive black holes

Raffaella Schneider Sapienza Università di Roma

in collaboration with:

Pedro Capelo, Luca Graziani, Alessandro Lupi, Roberto Maiolino, Lucio Mayer, Alessandro Trinca, Rosa Valiante, Marta Volonteri, Tommaso Zana...

the earliest quasars

Artistic visualization. Image credit: NASA, ESA, Joseph Olmsted (STScI)

the most luminous active galactic nuclei (AGN) in the Universe

> 200 quasars observed within the first Gyr of the Universe ($z \ge 6$)

Fan et al. (1999, 2001, 2006); Mortlock et al. (2011); Bañados et al. (2016); Wu et al. (2015); Yang et al. (2020, 2021); Mazzucchelli et al.(2017); Matsuoka et al. (2019a,b); Reed et al. (2019); Wang et al. (2019)...

distribution of all known quasars as of Dec 2022

Fan et al. 2023

the earliest supermassive black holes

the emission from Quasars (AGN in general) is powerd by accretion onto Supermassive Black Holes (SMBHs) up to 10⁹ - 10¹⁰ M_{sun}

Hyperluminous ones (L_{bol}>10⁴⁷ erg/s) shine close or above the Eddington luminosity limit (L_{Edd})

JWST has uncovered a large population of AGNs

the new SMBH discovery space opened by JWST

the new SMBH discovery space opened by JWST

when do the first BHs form in the Universe?

what is the mass of the first BHs?

are the BHs detected at high-z the "seeds" upon which super massive BHs form?

do the first BHs pair and merge on timescales shorter than the Hubble time?

a theoretical challenge

forming the first BH «seeds» \leftarrow \rightarrow

physical conditions of gas in small protogalactic systems M ≈ 10⁶ M_{sun} 100 UA = 5 10⁻⁴ pc < R < 1- 10 kpc

growing black hole seeds $\leftarrow \rightarrow$

gas flows from galaxy-scales \approx 100s kpc to MBH/SMBH gravitational radii $R_g = 10^{-3} \text{ UA } M_{bh}/10^3 \text{ M}_{sun} = 5 \ 10^{-9} \text{ pc}$

following the co-evolution of SMBHs and their host galaxies on cosmological timescale 0 < z < 20 - 30 13.7 Gyr < t < 200 Myr

a theoretical challenge

forming the first BH «seeds» \leftarrow ightarrow

physical conditions of gas in small protogalactic systems M ≈ 10⁶ M_{sun} 100 UA = 5 10⁻⁴ pc < R < 1- 10 kpc

growing black hole seeds \leftarrow \rightarrow

gas flows from galaxy-scales \approx 100s kpc to MBH/SMBH gravitational radii R_g = 10⁻³ UA M_{bh}/10³ M_{sun}= 5 10⁻⁹ pc

following the co-evolution of SMBHs and their host galaxies on cosmological timescale 0 < z < 20 - 30 13.7 Gyr < t < 200 Myr

The seeds of the earliest SMBHs

Astrophysical BHs formation channels

The seeds of the earliest SMBHs

Astrophysical BHs formation channels

from Inayoshi et al. 2020

The seeds of the earliest SMBHs

Astrophysical BHs formation channels

from Inayoshi et al. 2020

multiple «BH seeds» forming in a single halo

in situ dynamical interactions among BH seeds may be expected

(see also Mestichelli+24 for Pop III – BHs clusters)

a theoretical challenge

forming the first BH «seeds» \leftarrow \rightarrow

physical conditions of gas in small protogalactic systems M ≈ 10⁶ M_{sun} 100 UA = 5 10⁻⁴ pc < R < 1- 10 kpc

growing black hole seeds \leftarrow ightarrow

gas flows from galaxy-scales \approx 100s kpc to MBH/SMBH gravitational radii $R_g = 10^{-3} UA M_{bh}/10^3 M_{sun} = 5 10^{-9} pc$

following the co-evolution of SMBHs and their host galaxies on cosmological timescale 0 < z < 20 - 30 13.7 Gyr < t < 200 Myr

growing the first black hole seeds: Eddington limit

the outward radiation pressure force on the infalling gas, through electron scattering, matches the inward gravitational force at the critical accretion rate of:

breaking the limit: super-Eddington growth

if photon diffusion timescale is longer than the advection timescales: $R_{tr} > R_{Sch}$

 $R_{\rm tr} \equiv \frac{\kappa_{\rm es}}{4\pi c} \dot{M}_{\bullet} = 5 \dot{m} R_{\rm Sch} \qquad \dot{m} \equiv \dot{M}_{\bullet} / \dot{M}_{\rm Edd} \qquad \dot{M}_{\rm Edd} \equiv 10 \ L_{\rm Edd} / c^2 \qquad L_{\rm Edd} = 4\pi c G M_{\bullet} / \kappa_{\rm es}$

Begelman 1979, Abramowicz et al. 1988; Ohsuga+2005; Sadowski 2011; Sadowski+2013; Sadowski and Narayan 2016; Jiang+2017; Inayoshi & Haiman 2016; Jiiang+2014, 2017; Takeo+2018; Madau+2014

super-Eddington accretion in early protogalaxies?

simulations on the scale of BH accretion disks

is super-Eddington growth sustainable?

SPH simulation (GASOLINE2) of a \approx 10³ M_{sun} black hole in a gas-rich protogalaxy at z \approx 15 (m_{res} = 25 M_{sun})

Sassano, Capelo, Mayer, RS, Valiante (2023)

see also Lupi+2014, Regan+2019, Massoneau+2022, Lupi+2023

does super-Eddington growth depend on BH seed mass?

SPH simulation (GASOLINE2) of a BH seed in a gas-rich protogalaxy at z \approx 15 (m_{res} = 25 M_{sun})

estimate the time duration of the super-Edd phase and BH mass growth, testing the impact of BH **displacement**, **star formation** and **feedback**

Tommaso Zana, Mairo Boresta et al. in prep

a theoretical challenge

forming the first BH «seeds» \leftarrow \rightarrow

physical conditions of gas in small protogalactic systems M ≈ 10⁶ M_{sun} 100 UA = 5 10⁻⁴ pc < R < 1- 10 kpc

growing black hole seeds $\leftarrow \rightarrow$

gas flows from galaxy-scales \approx 100s kpc to MBH/SMBH gravitational radii $R_g = 10^{-3} \text{ UA } M_{bh}/10^3 \text{ M}_{sun} = 5 \ 10^{-9} \text{ pc}$

following the co-evolution of SMBHs and their host galaxies on cosmological timescale 0 < z < 20 - 30 13.7 Gyr < t < 200 Myr

investigating the first sources of light and GWs with semi-analytical models

SAMs easily account for:

cosmic variance (DM halos merger trees based on Extended PS)

low-mass DM halos (mini halos; $T_{vir} < 10^4$ K, M $\sim 10^6$ M_{sun})

evolution of the host galaxy ISM (with metals and dust)

different physically-motivated seeding prescriptions

different BH accretion paradigms

BH dynamics (BH pairing/mergers delay times)

the formation of single quasars - GQd

A data-constrained **SAM** for **G**alaxies & **Q**uasars *with* **d**ust we use observed quasar properties to constrain model parameters

merger trees based on the EPS theory for a 10¹³ M_{sun} DM halo z=24 Population III/II stars formation according to gas metallicity (Z_{ISM}) ISM chemical enrichment with metals and dust BH seeds according to environmental properties (Z_{ISM}, J_{IW}) light+heavy (Valiante et al. 2016,2018) light+heavy+medium-weight (Sassano+2021) **Eddington-limited (Bondi) accretion** (Valiante et al. 2016,2018,2021, Sassano et el. 2021) Light Stellar and AGN feedback (energy-driven winds) Opt./UV/X-rays (Valiante et al. 2011, 2012) emission BH mergers in major halo-halo mergers (mass ratio >1:4) z=6.4 (Valiante et al. 2016, 2018a,b; Sassano et al. 2021)

Valiante et al. 2011; 2012; 2014

loud GW

sources

10¹³ M_{sun} host

DM halo merger three

z>6 SMBH seeds: where and when

LS form mainly in mini halos (T_{vir} <10⁴ K) at z>20 while MWS and HS form only in atomic cooling halos at later epochs Heavy seeds are less numerous as a consequence of their tight birth environmental conditions Sassano, Schneider, RV, Inayoshi, Chon, Omukai, Mayer, Capelo, MNRAS 2021

growing a z>6 SMBH: Eddington-limited scenario

Sassano, Schneider, RV, Inayoshi, Chon, Omukai, Mayer, Capelo, MNRAS 2021

black hole seeds need to be observed at z > 10

distribution of heavy and light seeds that live in "isolation" (no major or minor mergers)

at z > 10, 80% of light seeds and 98% of heavy seeds are isolated (most systems for \sim 50 Myr) these fractions decrease dramatically at z < 10

"Light" from z>6 SMBH seeds

Can we detect the emission from the first accreting BHs? – Valiante et al. 2018a,b; 2021

RV, Colpi, Schneider, Mangiagli, Bonetti, Cerini, Fairhurst, Haardt, Mills, Sesana, MNRAS 2021

"Light" from z>6 SMBH seeds

RV, Colpi, Schneider, Mangiagli, Bonetti, Cerini, Fairhurst, Haardt, Mills, Sesana, MNRAS 2021

the formation of single quasars - GQd

A data-constrained **SAM** for **G**alaxies & **Q**uasars *with* **d**ust we use observed quasar properties to constrain model parameters

merger trees based on the EPS theory for a 10¹³ M_{sun} DM halo z=24 Population III/II stars formation according to gas metallicity (Z_{ISM}) ISM chemical enrichment with metals and dust Seeds according to environmental properties (Z_{ISM}, J_{IW}) **light+heavy** (Valiante et al. 2016,2018,2021) **Eddington-limited (Bondi) accretion** (Valiante et al. 2016,2018,2021, Sassano et el. 2021) Light loud GW Opt./UV/X-rays sources emission **BH binaries** form in major halo mergers (DM halos mass ratio >1:4 **BHBs merging** via triple BH interactions 10¹³ M_{sun} host z = z_{Quasar} (merger probabilities from Bonetti+18) DM halo merger three z=6.4 z=2 z=0.2 J1148 J2345 **PDS456**

Fan et al. 2001 Shen et al. 2011 Nardini et al. 2011

RV, Colpi, Schneider, Mangiagli, Bonetti, Cerini, Fairhurst, Haardt, Mills, Sesana, MNRAS 2021

cosmologically driven BH binaries

GQd MODEL on 3 target QSOs of >10⁹ M_{sun} BH @ z=0.2, 2 and 6.4 in 10¹³ M_{sun} DM halos

light and heavy seeds form in pristine/metal poor haloes

pair during galaxy major mergers (DM halo mass ratio μ > 1:4)

coalesce after triple BH interactions following later galaxy mergers

		single simulation		
zqso	<i>n</i> _{0.1}	fL-L	fl-н	fн-н
6.4	24	71%	17%	13%
2.0	45	91%	7%	2%
0.2	84	89%	11%	0

~70-90% merger of light seed pairs

Ungrown light seeds forming at z>10 merge through cosmic epochs down to z~3

RV, Colpi, Schneider, Mangiagli, Bonetti, Cerini, Fairhurst, Haardt, Mills, Sesana, MNRAS 2021

"Sound" from early BHs in the ET and LISA domain

GQd MODELS \rightarrow triple interaction-driven BHB mergers along the cosmic evolution history of >10⁹ M_{sun} SMBHs @ z=0.2, 2 and 6.4

RV, Colpi, Schneider, Mangiagli, Bonetti, Cerini, Fairhurst, Haardt, Mills, Sesana, MNRAS 2021

"Sound" from early BHs in the ET and LISA domain

GQd MODELS \rightarrow triple interaction-driven BHB mergers along the cosmic evolution history of >10⁹ M_{sun} SMBHs @ z=0.2, 2 and 6.4

RV, Colpi, Schneider, Mangiagli, Bonetti, Cerini, Fairhurst, Haardt, Mills, Sesana, MNRAS 2021

"Sound" from early BHs in the ET and LISA domain

GQd MODELS \rightarrow triple interaction-driven BHB mergers along the cosmic evolution history of >10⁹ M_{sun} SMBHs @ z=0.2, 2 and 6.4

RV, Colpi, Schneider, Mangiagli, Bonetti, Cerini, Fairhurst, Haardt, Mills, Sesana, MNRAS 2021

Populations studies The Cosmic Archaeology Tool - CAT

statistical sample of halos in a wide mass range [10⁶-10¹⁴]M_{sun}

light (40-140 M_{sun} >260 M_{sun}) and heavy (10⁵ M_{sun}) seed formation channels

Different accretion paradigms:

- Eddington-limited Bondi accretion (ref. model)
- merger-driven super-Edd. via slim disc accretion

Model calibration

reproduce the cosmic star formation history (SFRD) reproduce obs. properties of high-z QSOs (L_{bol} , M_{BH})

Trinca, Schneider, RV, Graziani, Zappacosta, Shankar, MNRAS 2022

the observability of high-z AGN with JWST

Trinca, Schneider, Maiolino, RV, Graziani, Volonteri MNRAS 2023

the observability of high-z AGN with JWST

Trinca, Schneider, Maiolino, RV, Graziani, Volonteri MNRAS 2023

JWST-detected BHs at $z \approx 9 - 11$

Kokorev+24

data from: Kocevski+23, Ubler+23, Harikane+23, Larson+23, Maiolino+23, Bogdan+23, Kokorev+24

data from: Kocevski+23, Ubler+23, Harikane+23, Larson+23, Maiolino+23, Bogdan+23, Kokorev+24

data from: Kocevski+23, Ubler+23, Harikane+23, Larson+23, Maiolino+23, Bogdan+23, Kokorev+24

data from: Kocevski+23, Ubler+23, Harikane+23, Larson+23, Maiolino+23, Bogdan+23, Kokorev+24

data from: Kocevski+23, Ubler+23, Harikane+23, Larson+23, Maiolino+23, Bogdan+23, Kokorev+24

data from: Kocevski+23, Ubler+23, Harikane+23, Larson+23, Maiolino+23, Bogdan+23, Kokorev+24

data from: Kocevski+23, Ubler+23, Harikane+23, Larson+23, Maiolino+23, Bogdan+23, Kokorev+24

BH dynamics: timescale matters especially at high redshift

the earliest BH binaries: population studies (\mathcal{F})

Trinca et al. in prep.

merging BHs across cosmic epochs

Trinca et al. in prep.

a population of GW sources

Testing prescriptions for BH dynamics: pairing+hardening phase

the two BH accretion regimes are expected to leave specific imprints in the properties of GW sources that would be detectable with ET and LISA

Trinca et al. in prep.; Davari et al. in prep.

Summary

- Origin and growth of SMBHs at z > 6 is a major theoretical challenge!
- JWST is revolutionising the field with detections and fainter and more distant AGNs
- Current observations/models point to a mix of BH seed populations, whose growth can be super-Eddington
- Incredible synergy with future GW telescopes!