
Correlated D decays at the Ψ(3770)

Richard Gass and Michael D. Sokoloff

Physics Department, University of Cincinnati

July 19, 2011

We update the calculations of correlated D0 − D0
decay rates presented at the

Elba Collaboration Meeting. In particular, we present the equations for

• (K−π+π0,K∓e±ν), (K−π+π0,K−K+), (K−π+π0,K−π+)

• (K0
Sπ
−π+,K∓e±ν), (K0

Sπ
−π+,K−K+), (K0

Sπ
−π+,K−π+)

• (K−π+π0,K−π+π0)

• (K0
Sπ
−π+,K0

Sπ
−π+)

We also note that

• the equations for K0
Lπ
−π+ in place of K0

Sπ
−π+ have exactly the same form.

When observed in conjunction with fully reconstructed final states, CLEO
observes more than twice as many K0

Lπ
−π+ decays as K0

Sπ
−π+ decays, so

SuperB should benefit from these channels similarly.

• the formalism for correlated K−π−π+π+ decays is algebraically the same as
that for K−π+π0 decays except that the phase space is 5-dimensional rather
than 2-dimensional
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Forms of M and |M|2

For the Elba meeting we derived the following equations:

2
√

2M =

q
p
AαAβ −

p

q
AαAβ

 [e1(t1)e2(t2)− e1(t2)e2(t1)] (1)

+ (AαAβ −AαAβ) [e1(t1)e2(t2) + e1(t2)e2(t1)]

which has the form

2
√

2M = X(e11e22 − e12e21) + Y (e11e22 + e12e21) . (2)

From this one calculates

8|M|2 = e−Γ(t1+t2) × { XX∗ (cosh yΓ∆t− cos xΓ∆t) (3)

− 2<(XY ∗) sinh yΓ∆t+ 2=(XY ∗) sinxΓ∆t

+ Y Y ∗ (cosh yΓ∆t+ cosxΓ∆t }

For xΓ∆t, yΓ∆t� 1 this can be approximated by

4|M|2 = e−Γ(t1+t2) ×
 XX∗

(x2 + y2)

4
(Γ∆t)2

 (4)

− <(XY ∗) yΓ∆t+ =(XY ∗)xΓ∆t

+ Y Y ∗
1 +

(y2 − x2)

4
(Γ∆t)2




• Y is the unmixed amplitude

• X is the mixing amplitude

• XY ∗ controls the interference terms in the mixing rate
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Summary of Results Presented at Elba Meeting

We have made rough estimates of SuperB sensitivity to mixing assuming

• events rates scale from CLEO-c,

• SuperB integrated L = 500 fb−1,

• we can cleanly separate |Γ∆t| > 2 from |Γ∆t| < 2,

• p/q ≈ 1,

• y ≈ 0.01

channel type of measurement figure of merit

K−K+, π−π+ v K−K+, π−π+ integrated |q/p− p/q|2 × 6 events

K−π+ v K−π+ + cc integrated 46 events

K−e+ν v K−e+ν + cc integrated 46 events

K−e+ν v K−K+, π−π+ + cc TDA 1887± 247 events (∼ 7σ)

K−e+ν v K−π+, + cc TDA 800± 40 events (∼ 20σ)

K−π+ v K−K+, π−π+ + cc integrated cos δKπ ∼ ±2%

K−π+ v K−K+, π−π+ + cc TDA 650± 156 events (∼ 4σ)

Sensitivity to mixing (and CP violation) is greatest when the interference term is
as large as possible compared to the direct correlated decay term. This requires
“same-sign” decays with a DCS amplitude interfering with a CF amplitude.
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(K−`+X,K−π+π0)

With the notation

A(D0 → K−π+π0) = Arζ(s12, s13) (5)

A(D
0 → K−π+π0) = Arζ(s12, s13) = keiδKππ0Arζ(s12, s13)

The (small yΓ∆t, small xΓ∆t) limit for the (K−`+X,K−π+π0) decay rate is

|M|2 =
1

4
e−Γ(t1+t2) |Ar|2 |Aβ|2 × (6)

∣∣∣∣∣∣∣
p

q

∣∣∣∣∣∣∣
2

ζ(s12, s13) ζ
∗(s12, s13)

x2 + y2

4

 (Γ∆t)2

−
<

p
q
ζ(s12, s13)ζ

∗
(s12, s13)

 cos δKππ0

+=
p
q
ζ(s12, s13)ζ

∗
(s12, s13))

 sin δKππ0

 k yΓ∆t

+

=
p
q
ζ(s12, s13)ζ

∗
(s12, s13)

 cos δKππ0

−<
p
q
ζ(s12, s13)ζ

∗
(s12, s13)

 sin δKππ0

 k xΓ∆t

+k2 ζ(s12, s13) ζ
∗
(s12, s13)

1 +

y2 − x2

4

 (Γ∆t)2


 .

As a first approximation, the time-integrated rate is dominated by the doubly-
Cabibbo suppressed rate associated with Y Y ∗. To a lesser degree, the pure
mixing rate propotional to the Cabibbo favored rate, XX∗, also contributes.
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(K−K+,K−π+π0)

In this case, the time-integrated rate will be dominated by

Y Y ∗ = ζζ∗ + k2ζζ
∗ − 2k

[
<(ζζ

∗
) cos δKππ0 + =(ζζ

∗
) sin δKππ0

]
. (7)

The time-odd rate will depend on the real and imaginary parts of

XY ∗ = −
q

p
k2ζζ

∗ −
p

q
ζζ∗ (8)

+ k

q
p
eiδKππ0ζζ∗ +

p

q
eiδKππ0ζζ

∗


In the limit p/q = 1,

XY ∗ → −k2ζζ
∗ − ζζ∗ + 2k

[
<(ζζ

∗
) cos δKππ0 + =(ζζ

∗
) sin δKππ0

]
(9)

which is purely real and equal in magnitude to Y Y ∗. In this limit, the time-odd
part of the rate is proportional only to yΓ∆t and is independent of x.
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(K−π+,K−π+π0)

Here we will write

Aα = A(D0 → K−π+) (10)

Aα = k1e
iδ1Aα

Aβ = A(D0 → K−π+π0) = Arζ

Aβ = k2eiδ2Ar ζ

so that

X =

q
p
k1k2 e

i(δ1+δ2) ζ −
p

q
ζ

 ArAβ (11)

Y =
(
k2 e

iδ2 ζ − k1 e
iδ1 ζ

)
ArAβ .

It follows that

Y Y ∗ = k2
2 ζζ

∗
+ k2

1ζζ
∗ (12)

−2 k1k2

[
<(ζζ

∗
) cos(δ1 − δ2)−=(ζζ

∗
) sin(δ1 − δ2)

]
|Aα|2 |Ar|2 ,

and as a good first approximation,

XY ∗ =
p

q

{ [
<(ζζ

∗
) (k1 cos δ1 − k2 cos δ2) (13)

+ =(ζζ
∗
)(−k1 sin δ1 + k2 sin δ2)

]
+ i

[
=(ζζ

∗
) (k1 cos δ1 + k2 cos δ2)

+ <(ζζ
∗
)(k1 sin δ1 + k2 sin δ2)

] }
|Aα|2 |Ar|2
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Some Notation for D0 → K0
Sπ
−π+

At first sight, K0
Sπ
−π+, appears to be similar to K−π+π0 as both are three-body

decays whose amplitudes are often described using isobar models. However, in
the limit of no direct CP violation in D decay, and ignoring the known CP
violation in K0

S decay, we can exploit the relationship

A(D
0 → K0

Sπ
−π+)(s12, s13) = A(D0 → K0

Sπ
−π+)(s13, s12) (14)

Using the notation

A(D0 → K0
Sπ
−π+)(s13, s12) = Arζ(s12, s13) (15)

and assuming no direct CP violation, we have

Aα = Arζ(s12, s13) ; Aα = Arζ(s13, s12) ; Aβ = Aβ (16)

It is sometimes useful to re-write ζ(s12, s13) and ζ(s13, s12) in terms of symmetric
and antisymmetric functions

ζS(s13, s12) =
1

2
[ζ(s12, s13) + ζ(s13, s12)] (17)

ζA(s13, s12) =
1

2
[ζ(s12, s13)− ζ(s13, s12)]

so that

ζ(s12, s13) = ζS(s13, s12) + ζA(s13, s12) (18)

ζ(s13, s12) = ζS(s13, s12)− ζA(s13, s12) .
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Correlated (K−`+ν,K0
Sπ
−π+) decays

With the notation introduced for Aα = A(D0 → K0
Sπ
−π+),

X = −
p

q
(ζS + ζA)ArAβ (19)

Y = −(ζS − ζA)ArAβ
which gives

Y Y ∗ = (2 ζS ζ
∗
S + 2 ζA ζ

∗
A − ζ ζ

∗) |Ar|2 |Aβ|2 (20)

XY ∗ =
p

q

[
ζS ζ

∗
S − ζA ζ

∗
A − 2 i=(ζS ζ

∗
A)

]
|Ar|2 |Aβ|2

so that

<(XY ∗) =

<
p
q

 (ζS ζ
∗
S − ζA ζ

∗
A) + 2=

p
q

=(ζS ζ
∗
A)

 |Ar|2 |Aβ|2 (21)

=(XY ∗) =

−2<
p
q

 =(ζS ζ
∗
A) + =

p
q

 (ζS ζ
∗
S − ζA ζ

∗
A)

 |Ar|2 |Aβ|2
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Correlated (K−K+,K0
Sπ
−π+) decays

As usual, the time integrated rate is dominated by

Y Y ∗ = 4 ζA(s12, s13)ζ
∗
A(s12, s13) |Ar|2 |A|2 (22)

which we can identify as the antisymmetric rate. Were we to consider K0
Sπ
−π+

produced in conjunction with a pure CP odd eigenstate rather than CP even,
Y Y ∗ would be the symmetric rate instead. The time-odd rates are proportional
to the real and imaginary parts of XY ∗ which is

XY ∗ = 2

 ζS ζ∗A
p
q
−
q

p

 + ζA ζ
∗
A

p
q

+
q

p


 |Ar|2 |A|2 . (23)

In the limit p = q, XY ∗ → (1/2)Y Y ∗. Were we to consider K0
Sπ
−π+ produced

in conjunction with a pure CP odd eigenstate rather than CP even, XY ∗ becomes

XY ∗ = 2

 (ζS ζ
∗
A)∗

p
q
−
q

p

 + ζS ζ
∗
S

p
q

+
q

p


 |Ar|2 |A|2 . (24)

The roles of ζS and ζA are interchanged. If p 6= q the <(ζS ζ
∗
A) = <(ζS ζ

∗
A)∗ but the

=(ζS ζ
∗
A) = −=(ζS ζ

∗
A)∗ so the time-odd asymmetries will differ and the difference

of the two as a function of position in the Dalitz plot will provide additional
senstivity to the real and imaginary parts of p/q.

9



Correlated (K−π+,K0
Sπ
−π+) decays

With the same type of notation as used earlier,

Y Y ∗ = ζ′ ζ′∗ + k2 ζ ζ∗ − 2 k eiδ<(ζ ζ′∗) (25)

= ζ′ ζ′∗ + k2 ζ ζ∗ − 2k cos δ<(ζ ζ′∗) + 2k sin δ=(ζ ζ′∗) .

We can identify the real and imaginary parts of ζ ζ′∗ with ζS and ζA writing

ζ ζ′∗ = ζS ζ
∗
S − ζA ζ

∗
A − 2i=(ζS ζ

∗
A) (26)

from which we find

<(ζ ζ′∗) = ζS ζ
∗
S − ζA ζ

∗
A ; =(ζ ζ′∗) = −2=(ζS ζ

∗
A) . (27)

This gives

Y Y ∗ = ζ′ ζ′∗ + k2 ζ ζ∗ − 2k cos δ (ζS ζ
∗
S − ζA ζ

∗
A)− 4k sin δ=(ζS ζ

∗
A) . (28)

The time-odd rate is proportional the real and imaginary parts of

XY ∗ =
q

p
k2 (ζ ζ′∗)∗ +

p

q
(ζ ζ′∗) (29)

+ k

q
p
eiδ (ζ′ ζ′∗)−

p

q
e−iδ (ζ ζ∗)



In the limit p/q → 1, these become

<(XY ∗) = (1 + k2) [ζSζ
∗
S − ζA ζ

∗
A] + cos δ [ζζ∗ − k ζ′ζ′∗] (30)

=(XY ∗) = sin δ [ζ ζ∗ + k ζ′ζ′∗]− (1− k2)=(ζSζ
∗
A)
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Correlated (K−π+π0,K−π+π0) decays

s correlated final state we will use the notation

Aα(s12, s13) = Arζ(s12, s13) (31)

Aα(s12, s13) = Arζ(s12, s13) = κ(s12, s13) e
iε(s12,s13)Arζ(s12, s13)

Aβ(s′12, s
′
13) = Arζ

′(s′12, s
′
13)

Aβ(s′12, s
′
13) = Arζ

′
(s′12, s

′
13) = κ′(s′12, s

′
13) e

iε(s′12,s
′
13)Arζ

′(s′12, s
′
13) .

The real functions κ, κ′, ε, and ε′ are chosen so that κ and κ′ are positive definite.

Y Y ∗ = ζ ζ∗ ζ
′
ζ
′∗

+ ζ ζ
∗
ζ′ ζ′∗ + 2<

[
(ζ ζ

∗
) (ζ

′
ζ′∗)

]
|Ar|4 . (32)

The first two terms are the products of the Cabibbo favored rate for one decay
and the doubly-Cabibbo suppressed rate for the other. The last term is the
product of two Cabibbo favored, doubly-Cabibbo suppressed interference rates.
As a good approximation, we can find calculate the interference term ignoring
the doubly-Cabibbo suppressed term in X:

XY ∗ ≈
p

q

[
(ζ ζ∗) (ζ′ ζ

′∗
)− (ζ ζ

∗
) (ζ′ ζ′∗)

]
|Ar|4 . (33)

Here, each term is the product of a Cabibbo favored rate for one decay and the
interference of amplitudes for the other. Events will populate a four-dimensional
phase space corresponding to the two Dalitz plot positions (s12, s13) and (s′12, s

′
13).

Furthermore, this interference term is antisymmetric under the interchange of the
ζ and ζ′. This is evident algebraically from the form of Eqn. (33). Physically, it
corresponds to identifying one or the other Dalitz plot position as that of the first
D to decay. As the interference rate is time-odd, XY ∗ must be antisymmetric
when the two Dalitz plot positions are interchanged.
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Correlated (K−π+π0,K−π+π0) decays - II

We can also expand the interference term using the functions κ, κ′, ε, and ε′

defined in Eqn. (31):

XY ∗ =
p

q
(ζ ζ∗) (ζ′ ζ′∗) [(κ′ cos ε′ − κ cos ε) − i(κ′ sin ε′ − κ sin ε)] (34)

which manifests the (anti)symmetry very explicitly. In the band of the Dalitz plot
where the DCS amplitude is dominant, κ(′) will be large while in the band of the
Dalitz plot where the CF amplitude is large it will be small. The magnitude of
XY ∗ can be large if either, (a) one of the Dalitz plot points is in a DCS dominated
region and the other is in a CF dominated dominated region, or (b) both Dalitz
points are in DCS dominated regions but the phases differ significantly. In the
same way, we can write

Y Y ∗ = ζ ζ∗ ζ
′
ζ
′∗

+ ζ ζ
∗
ζ′ ζ′∗ + 2κκ′(ζ ζ∗) (ζ′ ζ′∗) cos(ε′ − ε) . (35)

To extract the mixing parameters x and y from the data in this channel, we
can divide the 4-dimensional phase space of the two Dalitz plot positions into a
finite number of bins according to the real and imaginary parts of XY ∗ and fit
the time difference asymmetries in these bins. The statistical significance of the
assymmetry will also depend inversely on the total expected rate, so we should
use this as part of the metric for creating bins.
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Correlated K0
Sπ
−π+, K0

Sπ
−π+ decays

Here, we use notation here more similar to that used for K−π+π0, K−π+π0 than
for K0

Sπ
−π+, K−π+:

Aα(s12, s13) = ζ(s12, s13)Ar = (ζS + ζA)Ar (36)

Aα(s12, s13) = ζ(s13, s12)Ar = (ζS − ζA)Ar

Aβ(s′12, s
′
13) = ζ(s′12, s

′
13)Ar = (ζ′S + ζ′A)Ar

Aβ(s′12, s
′
13) = ζ(s′13, s

′
12)Ar = (ζ′S − ζ

′
A)Ar

The superscript ′ distinguishes the amplitudes associated with the two Dalitz
plot positions of the K0

Sπ
−π+ decays rather than the amplitudes associated with

direct D0 and D
0

decay. With this notation

Y Y ∗ = 4
{
ζAζ

∗
A ζ
′
Sζ
′∗
S + ζSζ

∗
S ζ
′
Aζ
′∗
A (37)

−2
[
<(ζSζ

∗
A)<(ζ′Sζ

′∗
A) + =(ζSζ

∗
A)=(ζ′Sζ

′∗
A)

]}

In the limit p = q, the mixing amplitude becomes

X = (ζS − ζA) (ζ′S − ζ′A)− (ζS + ζA) (ζ′S + ζ′A) (38)

= −2 [ζA ζ
′
S + ζS ζ

′
A]

in which case

XY ∗ = −4 (ζA ζ
′
S + ζS ζ

′
A) (ζ∗A ζ

′∗
S − ζSζ

′∗
A) (39)

= −4
[
ζA ζ

∗
A ζ
′
S ζ
′∗
S − ζS ζ

∗
S ζ
′
A ζ
′∗
A + 2 i=(ζSζ

∗
Aζ
′
Aζ
′∗
S)

]
= −4

[
ζA ζ

∗
A ζ
′
S ζ
′∗
S − ζS ζ

∗
S ζ
′
A ζ
′∗
A

+2 i
(
−<(ζS ζ

∗
A)=(ζ′S ζ

′∗
A) + <(ζ′S ζ

′∗
A)=(ζS ζ

∗
A)

) ]
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Summary

In the limit of no CP violation in mixing (p/q = 1),

• The formulas presented at the Elba meeting and here allow one to write corre-
lated events generators for the modes studied. These almost certainly include
the most important modes for studying mixing and CP violation in mixing
(i.e., p/q 6= 1). This will allow us to determine efficiency and ∆t resolution
for possible machine and detector configurations (βγ, B-field strength, etc.).

• The rates associated with direct decays can be extracted from data indepen-
dently of models using time-integrated measurements. Mixing perturbs these
determinations at the 10−4 level if one integrates over all decay times, and
even less if one integrates over limited ranges of ∆t.

• Relative (strong interaction) phases between Cabibbo favored and doubly-
Cabibbo suppressed decays to the same final states can be extracted from
time-integrated measurements.

• The interaction rate terms can generally be extracted from data indepen-
dently of models using a multiplicity of time-integrated measurements if rel-
ative strong phases are kind to us. If not, a multiplicity of time-dependent
measurements allows these rates as well as the mixing parameters to be ex-
tracted with no need for an model.

• Numerical studies using the correlated formulas can be made without full
Monte Carlo simulation to determine nominal sensitivities to mixing and CP
violation in mixing.
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