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We update the calculations of correlated D° — D’ decay rates presented at the
Elba Collaboration Meeting. In particular, we present the equations for

o (K ntn’, KTetv), (K ntn’, K-K'"), (K ntn’ K =)
o (Kin—nt,KTetv), (Kin nt,K-K%), (Kin nt,K-n")
o (K ntal, K—ntn?)
o (Kim nt, Kgm m™)

We also note that

e the equations for K{n~n* in place of Kgm~m" have exactly the same form.
When observed in conjunction with fully reconstructed final states, CLEO
observes more than twice as many K)nw 7wt decays as Kgﬂ‘_ﬂ‘+ decays, so
SuperB should benefit from these channels similarly.

e the formalism for correlated K~ w~wTn™ decays is algebraically the same as

that for K~ nt7n% decays except that the phase space is 5-dimensional rather
than 2-dimensional



Forms of M and |M|?

For the Elba meeting we derived the following equations:

2\/5./\/1 = (Z ,Tla,Tlg — ZAaAg) [61(t1)€2(t2) - 61(t2)€2(t1)]

+ (AaAp — AaAg) [e1(tr)ex(t2) + ei(t2)ex(t1)]
which has the form
22 M = X (e11€32 — €12€21) + Y (e + e1zes1) .
From this one calculates

8M|? = e Tlitt2) » I X X*(cosh yT'At — cos zTAt)
— 2R(XY") sinh yT'At 4+ 2I(XY ™) sinxT'At
+ YY" (coshyI'"'At + cos xT'At }

For xI'At, yI'At < 1 this can be approximated by
(z* + y?)
4

4|M|2 — B_F(t1+t2) X { XX* { (FAt)2]
— R(XY")y'At+ S(XY ") 2" At
(y* — z%)
+ YY* {1 + (I‘At)zl}

e Y is the unmixed amplitude
e X is the mixing amplitude

e XY * controls the interference terms in the mixing rate



Summary of Results Presented at Elba Meeting

We have made rough estimates of SuperB sensitivity to mixing assuming

e events rates scale from CLEO-c,
e SuperB integrated £ = 500fb™!,

e we can cleanly separate |['At| > 2 from |TAt| < 2,

ep/q=1,
oy~ 0.01

channel type of measurement

figure of merit

K K, nntv KTK', #—n" integrated

K7t v K n" 4+ cc integrated
Ke'vv K etv + cc integrated
Kevv K K", n—n™ +cc TDA
Kevv K nt, 4+ cc TDA

K ntv K Kt,nmnmt +cc integrated
K rntvK Kt,nm nt +cc TDA

|Q/P — P/q|2 X 6 events
46 events

46 events
1887 4 247 events (~ 7o)
800 + 40 events (~ 200)
cos O, ~ 2%
650 £ 156 events (~ 40)

Sensitivity to mixing (and CP violation) is greatest when the interference term is
as large as possible compared to the direct correlated decay term. This requires
“same-sign” decays with a DCS amplitude interfering with a CF amplitude.



(K¢ X, K ntx0)

With the notation
AD° - K ntn?) = A,{(s12,513) (5)
Z(EO — K ntn0) = A,((s12,513) = ke“kxr0A, (512, 513)

The (small yI'At, small xT'At) limit for the (K £7 X, K~ 7" n%) decay rate is

1 _
M = eI 4,2 A )

q

- {% (5 C(812, 313)6*(8123 313)) COS 0 g0

2 2
C(8125 813) C* (8125 S13) (ml—y) (T At)?

—|—% (ZC(Slz, 813)6*(812, 813))) sin 5K7T71'0] k yI‘At
+ [% (ZC(SR, 513)C" (812, 813)) COS O g o 0

—R (pC(Sl% 813)6*(3127 813)) sin 5K7‘r7‘r° k xT'At
q

() ).

As a first approximation, the time-integrated rate is dominated by the doubly-
Cabibbo suppressed rate associated with YY*. To a lesser degree, the pure
mixing rate propotional to the Cabibbo favored rate, X X*, also contributes.

+k? (812, 513) ¢ (8125 813)
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(K-K*, K ntx0)

In this case, the time-integrated rate will be dominated by
YY* = (¢ + k¢ — 2k [R(CCT) €08 Sxcnpo + F(CCT) sinberno) - (7)

The time-odd rate will depend on the real and imaginary parts of

" qQ.o—« D .,
XY* = —2k*¢" — —¢¢ (8)
p q
+ k qei(sKﬂ_ﬂgcc* e pei(SKﬂ’TFOCC*}
p q

In the limit p/q = 1,
XY* = —k*CC — ¢¢ + 2k [%(CC*) cos O g0 + I(¢CT) sin 5Km,o] (9)

which is purely real and equal in magnitude to YY *. In this limit, the time-odd
part of the rate is proportional only to yI'At and is independent of x.



(K nt, K nt=aY)

Here we will write

A, = AD° - K~ =™) (10)
7[04 — kﬁleiélAa

As = AD° — K nn’) = A

A; = k*e2 A, ¢

so that

X = (q kiko et(01+02) ¢ — p
p - q
(kiz 6262 E — kl 6151 C) A

C) A, Az (11)
rAﬁ .

h<
|

It follows that
YY™ = k;¢C + k7¢CT (12)
—2kq1k5 {?R(CC*) COS(51 — 52) — %(CE*) Sin(51 - 52)} |Aa|2 |A7‘|2a

and as a good first approximation,

XY* P { [R(CC*) (k1 cos 61 — ks cos 62) (13)
q

%(CE*) (—kﬁl sin 51 —|— kﬁz sin 52)}
1 [%(CC*) (k1 cos 61 + k2 cos §2)
R((C) (k1 sin b1 + kasin 6y)| | | Aal® | AL

+ + +
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Some Notation for D° — Kon =t

At first sight, Kgﬂ_ﬁ+, appears to be similar to K~ ™7° as both are three-body
decays whose amplitudes are often described using isobar models. However, in
the limit of no direct CP violation in D decay, and ignoring the known CP
violation in Kg decay, we can exploit the relationship

A(D° = K%~ n7) (512, s13) = A(D° = K% 7") (513, 512) (14)
Using the notation
A(D° — Kgﬁ_w+)(313, s12) = AC(s12, 813) (15)
and assuming no direct CP violation, we have
Ao = Ar((812,813) 5 Ao = Ar((813,812); Ag = Ag (16)

It is sometimes useful to re-write ((s12, s13) and ((s13, S12) in terms of symmetric
and antisymmetric functions

Cs(s13, 812) = ; [C(s12, 513) + C (813, S12)] (17)
Ca(s13, 812) = > [C(8125 513) — (8135 S12)]

so that
C(s12,813) = (s(s13,512) + Ca(s13, 512) (18)

C(Sli’n 812) == CS(S13> 812) — CA(3137 312) .



Correlated (K £tv, K¢n~n™) decays

With the notation introduced for A, = A(D° - Kon =),

X = —Z(Cs +Ca) A A (19)
Y = —(¢s —Ca)A,Ap

which gives
YY* = (2¢sC5+2CaCh — ¢ CY) A2 | Apl? (20)
XY* = ’; CoCh— Calh — 2iS(Cs ¢y ] | A2 AL

so that

R(XY") — a%(’;) <cs<;—<Acz)+2%(Z) S(CsC) | AP A2 (@)

| Ar]* | Agl?

F(XY") — —2%(’;) %(c“scz)w(z) (Cs o= Cal?)




Correlated (K~ K™, K¢n~n™") decays

As usual, the time integrated rate is dominated by
YY" = 4(a(s12, 513) ¢y (512, 513) [Ar)* | AJ? (22)

which we can identify as the antisymmetric rate. Were we to consider Kgﬂ'_ﬂ'+
produced in conjunction with a pure CP odd eigenstate rather than CP even,
YY" would be the symmetric rate instead. The time-odd rates are proportional
to the real and imaginary parts of XY * which is

(P _ 4 (P 1
CSCA(q p)+CACA(q‘|‘p)

In the limit p = q, XY* — (1/2) YY*. Were we to consider Kgn~ 7" produced
in conjunction with a pure CP odd eigenstate rather than CP even, XY * becomes

XY*=2 |A |2 | A2, (23)

xy* =2 | @sca) (2= Y +escs (22| 1 ap. 21

q D q P
The roles of (s and {4 are interchanged. If p # g the R({s %) = R({s ()" but the
I(Cs¢h) = —B(Cs ¢y)* so the time-odd asymmetries will differ and the difference

of the two as a function of position in the Dalitz plot will provide additional
senstivity to the real and imaginary parts of p/q.



Correlated (K~ nt, Kgnr~nt) decays

With the same type of notation as used earlier,
YY* = (" +ECC—2ke” R(((™) (25)
= ¢'¢*+K*CC* — 2k cos S R(¢CC™) + 2k sind S(¢ ™).
We can identify the real and imaginary parts of ¢ {(’* with (s and (4 writing

C¢™ = (s —Cagy — 2t3(¢s Chy) (26)

from which we find

RECC™) = CsC5—Calhs (CC™) = —23(¢sCh) - (27)

This gives
YY* = ¢'¢""+Kk*¢C"— 2k cosd ((sCh — Call) — 4k sind S(¢sCh) . (29)

The time-odd rate is proportional the real and imaginary parts of
XY* = pk2 (€¢™) +q(CC’) (29)

+ k geié (C,C,*) . Ee_i(‘i (C C*)
p q

In the limit p/q — 1, these become

R(XY™) = (14 k) [¢sCh —Call] + cosd[¢CF — k¢ (30)
I(XY*) = sind [ ¢* + k¢ — (1 — K?) S(¢sCh)
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Correlated (K~ n% K- n"n?) decays

s correlated final state we will use the notation

Aoz(3127 813) = ATC(3127 313) (31)
A (512,813) = A,C(812,513) = k(812 513) €€12518) A ( (812, 513)

Ap(819) 813) = ArC' (812 813)

As(s],,813) = Arzl(sllza S13) = K'(81) 813) e'<(*12:%13) A (' (8155 813) -

’, €, and € are chosen so that x and k’ are positive definite.

YY* = (¢ "+ ¢+ 2R[(CC) (C U] 1A. (32)
The first two terms are the products of the Cabibbo favored rate for one decay
and the doubly-Cabibbo suppressed rate for the other. The last term is the
product of two Cabibbo favored, doubly-Cabibbo suppressed interference rates.

As a good approximation, we can find calculate the interference term ignoring
the doubly-Cabibbo suppressed term in X:

XY* & T[Ee) (€ = € @ e]a (33)

The real functions k, K

Here, each term is the product of a Cabibbo favored rate for one decay and the
interference of amplitudes for the other. Events will populate a four-dimensional
phase space corresponding to the two Dalitz plot positions (s12, s13) and (s},, s75)-
Furthermore, this interference term is antisymmetric under the interchange of the
¢ and ¢’. This is evident algebraically from the form of Eqn. (33). Physically, it
corresponds to identifying one or the other Dalitz plot position as that of the first
D to decay. As the interference rate is time-odd, XY * must be antisymmetric
when the two Dalitz plot positions are interchanged.
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Correlated (K~ n"n% K- 7n"n%) decays - II

We can also expand the interference term using the functions k, K/, €, and ¢
defined in Eqn. (31):

xy* = 7 (CC*) (' ¢™) [(K cos€’ — kcose) — i(k'sin€ — ksine€)] (34)
q

which manifests the (anti)symmetry very explicitly. In the band of the Dalitz plot
where the DCS amplitude is dominant, ) will be large while in the band of the
Dalitz plot where the CF amplitude is large it will be small. The magnitude of
XY™ can be large if either, (a) one of the Dalitz plot points is in a DCS dominated
region and the other is in a CF dominated dominated region, or (b) both Dalitz
points are in DCS dominated regions but the phases differ significantly. In the
same way, we can write

YY* = ¢¢* ¢ ¢T 4+ ¢ ¢ + 2K (CCY) (¢ ¢™) cos(€ —€). (35)

To extract the mixing parameters x and y from the data in this channel, we
can divide the 4-dimensional phase space of the two Dalitz plot positions into a
finite number of bins according to the real and imaginary parts of XY * and fit
the time difference asymmetries in these bins. The statistical significance of the
assymmetry will also depend inversely on the total expected rate, so we should
use this as part of the metric for creating bins.
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Correlated Kgn~ ", Kgn~nt decays

Here, we use notation here more similar to that used for K—n™#n°?, K—nt#° than
for K¢n—nt, K nt:

Aa(s12,813) = ((s12,813) Ar = (Cs+Ca) Ay (36)
Aa(s12,813) = ((513,512) Ar = (Cs —Ca) A,
Ap(S]y) S13) = C(8125 3,13) A, = (Cg+Cy) Ar

Ap(s12 813) = C(S13:812) Ar = (¢ — () Ar
The superscript ’ distinguishes the amplitudes associated with the two Dalitz
plot positions of the Kgﬂ'_ﬂ‘+ decays rather than the amplitudes associated with

direct D° and D’ decay. With this notation
YY* = 4 {¢aC; ¢s¢ s+ Cs¢5 ¢l (37)
—2 [R(CsCh) R(C's¢) + S(CsCh) S(¢s¢)])

In the limit p = g, the mixing amplitude becomes
X = (s —Ca)(¢'s —¢'4) — (Cs+Ca) (s +¢a) (38)
= —2[Ca¢'s+Cs¢ Al

in which case
XY*

—4(Cal’s+Cs¢"a) (€< —CsCy _ (39)
—4CaCh¢s s —CsCh¢ Al +2i3(Cs¢h¢ aC"s)
= —4/Ca (3¢5 — ¢ s aly

+24 (—R(¢s ¢) (s ¢ + R(Cs <) (s Ch)) |
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Summary

In the limit of no CP violation in mixing (p/q = 1),

e The formulas presented at the Elba meeting and here allow one to write corre-
lated events generators for the modes studied. These almost certainly include
the most important modes for studying mixing and CP violation in mixing
(¢.e., p/q # 1). This will allow us to determine efficiency and At resolution
for possible machine and detector configurations (3~, B-field strength, etc.).

e The rates associated with direct decays can be extracted from data indepen-
dently of models using time-integrated measurements. Mixing perturbs these
determinations at the 10™* level if one integrates over all decay times, and
even less if one integrates over limited ranges of At.

e Relative (strong interaction) phases between Cabibbo favored and doubly-
Cabibbo suppressed decays to the same final states can be extracted from
time-integrated measurements.

e The interaction rate terms can generally be extracted from data indepen-
dently of models using a multiplicity of time-integrated measurements if rel-
ative strong phases are kind to us. If not, a multiplicity of time-dependent
measurements allows these rates as well as the mixing parameters to be ex-
tracted with no need for an model.

e Numerical studies using the correlated formulas can be made without full
Monte Carlo simulation to determine nominal sensitivities to mixing and CP
violation in mixing.
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