

Finanziato dall'Unione europea NextGenerationEU

Missione 4 Istruzione e Ricerca

Maurizio Giannotti (University of Zaragoza) Perspectives on the Detection of Solar and Other Stellar Axions

25/01/2024

Finanziato dall'Unione europea NextGenerationEU

Perspectives on the Detection of Solar and Other Stellar Axions

Maurizio Giannotti University of Zaragoza, CAPA

AxionOrigins Kickoff Meeting, INFN-LNF, 25–26 January 2024

•Axions from the Sun: News and prospectives

Axions as telescopes for supergiants

•SN axions

Axions

World-wide effort to detect it.

Axions and ALPs

<u>Axions (and ALPs) interact with SM fields</u>. This allow for a rich and interesting phenomenology, and for their possible detection

$$g_{a\gamma} = \frac{C_{a\gamma}\alpha}{2\pi f_a} \qquad g_{ap} = C_{ap}\frac{m_p}{f_a} \qquad g_{ap} = C_{an}\frac{m_n}{f_a} \qquad g_{ap} = C_{ae}\frac{m_e}{f_a}$$

Axions and ALPs

Most relevant axion channels

$$\rightarrow \varepsilon_P \simeq 2.8 \times 10^{-31} F(\xi) \left(\frac{g_{a\gamma}}{\text{GeV}^{-1}}\right)^2 \frac{T^7}{\rho} \text{ erg g}^{-1} \text{ s}^{-1}$$

with T in K and ρ in g cm⁻³, and $F(\xi)$ is $\mathcal{O}(1)$. Valid in nondegeneratae plasma

$$\rightarrow \varepsilon_{\rm C} \simeq 2.7 \times 10^{-22} g_{ae}^2 \frac{1}{\mu_e} \left(\frac{n_e^{\rm eff}}{n_e}\right) T^6 \, {\rm erg \ g}^{-1} \, {\rm s}^{-1}$$

where $n^{\rm eff}$ takes into account degeneracy effects. Competitive with bremsstrahlung at low ρ and high T

$$\rightarrow \varepsilon_{\rm B} \simeq 8.6 \times 10^{-7} F_B g_{ae}^2 T^4 \left(\sum \frac{X_j Z_j^2}{A_j}\right) \operatorname{erg} \mathrm{g}^{-1} \, \mathrm{s}^{-1}$$

valid in degenerate plasma conditions. The function F_B takes into account the mild density dependence of the degenerate rate

Di Luzio, Fedele, <u>M.G., Mescia, Nardi, JCAP 02 (2022) 02, 035</u>

Stars as FIPs Factories

Volume production. FIP FIPs can escape stars, once produced. SIP Large flux!

Axions as Astro Messengers

Detecting stellar axions would allow to understand a lot about stars.

Solar magnetic field
C. A. J. O'Hare, A. Caputo, A. J. Millar, E. Vitagliano <u>Phys.Rev.D 102 (2020) 4</u>

Solar temperature profile
S. Hoof, J. Jaeckel, L. J. Thormaehlen, <u>arXiv:2306.00077</u>

Solar chemical composition
 J. Jaeckel, L. J. Thormaehlen, <u>Phys.Rev.D 100 (2019) 12</u>

Supergiant evolution
M. Xiao, et al., <u>Phys. Rev. D 106 (2022)</u>

Stellar Axion Flux

Stellar Axion Flux, $g_{a\gamma} = 0.6 \times 10^{-10} \,\text{GeV}^{-1}$, $g_{ai} = 0$, $m_a = 0$

The Sun as Axion Laboratory

We know the sun quite well from **neutrino detection** and **helioseismology**.

Currently, great consistency between the two.

 \rightarrow Solar abundance problem appears to be resolved \rightarrow <u>Ekaterina Magg et al. (2022)</u>.

CNO neutrinos measured by the Borexino Collaboration

 \rightarrow (2020) Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun and

 \rightarrow (2023) Final results of Borexino on CNO solar neutrinos

and **pp-neutrinos** by PandaX-4T

Xiaoying Lu et al. (submitted Jan 13, 2024),

→ <u>A Measurement of Solar pp Neutrino Flux using PandaX-4T Electron Recoil Data</u>

The Sun as Axion Factory

Coupling	Process	Energy			
Ø	Primakoff (E) $\gamma \sim a$	$\sim (3-4) \mathrm{keV}$			
8αγ	Primakoff (B) $\overset{\searrow}{E}_{E, B}$	~ $(10 - 200) \text{ eV} (\text{LP})$ \$\le\$ 1 keV (TP)			
8 _{ae}	ABC $e.g., e+Ze \rightarrow Ze+e+a$	~ 1 keV			
	nuclear reactions $p + d \rightarrow {}^{3}\text{He} + a$	5.5 MeV			
8 _{aN}	Nuclear de-excitation ${}^{57}\text{Fe}^* \rightarrow {}^{57}\text{Fe} + a$ ${}^{7}\text{Li}^* \rightarrow {}^{7}\text{Li} + a$	14.4 keV 0.478 MeV			
	83 Kr* \rightarrow 83 Kr + a	9.4 keV			
	$^{169}\text{Tm}^* \rightarrow ^{169}\text{Tm} + a$	8.4 keV			

Solar Axions: photon and electron coupling

$$\frac{dN_a}{dt} = 1.1 \times 10^{39} \left[\left(\frac{g_{a\gamma}}{10^{-10} \text{GeV}^{-1}} \right)^2 + 0.7 \left(\frac{g_{ae}}{10^{-12}} \right)^2 \right] \text{ s}^{-1}$$

J. Redondo, JCAP 1312 (2013)

up to ~ 10^{39} axions/s ($\Rightarrow 10^{11}$ cm⁻² s⁻¹ axions on Earth), peaked at ~ keV

We can observe this flux with the Next Gen. Axion Helioscopes

Plus, the additional axion flux from the other processes

Hunting Solar Axions: Sikivie Helioscope

P. Sikivie PRL 51:1415 (1983)

What can we learn from helioscope Detection?

Degeneracy $(g_{ae}, g_{a\gamma})$ in flux observation.

Degeneracy can be broken in combination with pure terrestrial searches (e.g., ALPS II)

Recommendation:

 \rightarrow Heliscopes should lower the threshold to 0.3 keV

J. Redondo, JCAP 1312 (2013)

 \rightarrow can find $g_{ae}/g_{a\gamma}$ from spectra?

Example:

$$\frac{\Phi_{(0.3-1)\text{keV}}}{\Phi_{\text{tot}}} \simeq 2.4\% \qquad (\text{KSVZ})$$

where
$$\Phi_{\text{tot}} = \Phi_{(0.3-10)\text{keV}}$$
.

DFSZ with typical couplings $g_{ae}/g_{a\gamma} = 5 \times 10^{-2}$ GeV,

$$\frac{\Phi_{(0.3-1)\text{keV}}}{\Phi_{\text{tot}}} \simeq 22\% \qquad \text{(DFSZ)}$$

Using other bins (e.g., 1-2 keV) is much less efficient .

No significant improvement in going down to 0.1 keV.

Axioelectric Helioscopes

Helioscopes based on Axioelectric effect: LUX, XENON1T, ...

Large underground DM detectors.

Axioelectric = axion analog to the photoelectric (ph.e) effect

$$\sigma_{\rm ae} = \sigma_{\rm ph.e} \frac{g_{\rm ae}^2}{\beta} \frac{3E_{\rm a}^2}{16\pi\alpha m_{\rm e}^2} \left(1 - \frac{\beta^{2/3}}{3}\right)$$

Low energy suppression $(E_a/m_e)^2$

However, they can reach higher masses

Axioelectric Helioscopes

Solar axions?

Previous hint conclusively dismissed by the first science run of the XENONnT dark matter experiment (Jul 22, 2022), which confirmed the origin as decays from trace amounts of tritium

 $g_{ae} \lesssim 2 \times 10^{-12}$

E. Aprile et al., Phys.Rev.Lett. 129 (2022)

Solar axions from Magnetic Field

Axions from photon conversion in the solar magnetic field

Issues:

- require low threshold.
 Detector technology exists but the optics may be challenging.
- Very difficult coherent conversions in B_{LAB} for mass above a few meV.

 \rightarrow S. Hoof, J. Jaeckel, L. J. Thormaehlen, <u>JCAP 09 (2021) 006</u>

Low-lying (thermally excited) nuclear levels. Axion production in M1 transitions

 ${}^{57}\text{Fe}^* \rightarrow {}^{57}\text{Fe} + a(14.4 \text{ keV})$

 $g_{aN}^{\text{eff}} = 0.16g_{ap} + 1.16g_{an}$

Almost entirely neutron coupling

(See backup slides)

New dedicated project under commissioning \rightarrow <u>ISAI (Investigating Solar Axion by Iron-57)</u>, to constrain only the effective nuclear coupling through the inverse process:

 $a + {}^{57}\text{Fe} \rightarrow {}^{57}\text{Fe}^* \rightarrow {}^{57}\text{Fe} + \gamma$

Low-lying (thermally excited) nuclear levels. Axion production in M1 transitions

 83 Kr + a(9.4 keV) Kripton

Also essentially a neutron M1 transition $g_{aN}^{eff} \simeq g_{an}$

Experimentally, can be searched through the resonance absorption reaction

 $a + {}^{83}\text{Kr} \rightarrow {}^{83}\text{Kr} \ast \rightarrow {}^{83}\text{Kr} + \gamma(9.4 \text{ keV}),$

using a proportional gas chamber filled with krypton and placed in a low-background

 \rightarrow <u>Gavrilyuk et al. (2015)</u> and <u>Akhmatov et al. (2018)</u>.

Result: $|g_{AN}^3 - g_{AN}^0| \le 8.4 \times 10^{-7}$

Low-lying (thermally excited) nuclear levels. Axion production in M1 transitions

 $^{169}\text{Tm} + a(8.4 \text{ keV})$

Thulium

Proton M1 transition

Experimental search using $Tm_3Al_5O_{12}$ thulium garnet crystal as a bolometric detector for

 $a + {}^{169}\text{Tm} \rightarrow {}^{169}\text{Tm}^* \rightarrow {}^{169}\text{Tm} + \gamma(8.4\text{keV})$

$$\Rightarrow |g_{app}| < 8.89 \times 10^{-6} (90\% \text{ C.L.})$$

see \rightarrow <u>Derbin et al. (2023)</u>

$p + d \rightarrow {}^{3}\text{He} + a(5.5 \text{ MeV})$

Second step of pp-chain

Effective coupling
$$g_{aN}^{\text{eff}} = \left| \frac{g_{app} - g_{ann}}{2} \right|$$

- Searched by CAST JCAP 03 (2010)
- Borexino Phys.Rev.D 85 (2012)
- Recent analysis of the JUNO sensitivity G. Lucente, N. Nath, F. Capozzi, <u>MG</u>, A. Mirizzi, <u>Phys.Rev.D 106 (2022) 12</u>

Search for nuclear coupling only, using previous SNO data \rightarrow Phys.Rev.Lett. 126 (2021)

$$\left| \frac{g_{app} - g_{ann}}{2} \right| < 2 \times 10^{-5} \quad (95 \% \text{ C.L.})$$

Axions from Li-7

⁷Be +
$$e \rightarrow {}^{7}\text{Li}^{*} + v_{e}$$

 \downarrow
 ${}^{7}\text{Li}^{*} \rightarrow {}^{7}\text{Li} + a(477.6 \text{ keV})$

Pure proton coupling $g_{aN}^{\text{eff}} = g_p$

- \rightarrow Krcmar (2001)
- → <u>CAST (2009)</u>

Most restrictive limit (2011): $m_a < 8.6 \text{keV}$ (assuming QCD axion with $C_p = 1$) \rightarrow searches using LiF Crystals (@ Gran Sasso National Laboratories)

No recent analysis (to the best of my knowledge)

Supergiants Axions

Stellar Axion Flux, $g_{a\gamma} = 0.6 \times 10^{-10} \,\text{GeV}^{-1}$, $m_a = 0$

Supergiants Axions

Di Luzio, MG, Nardi, Visinelli, Phys.Rept. 870 (2020)

Supergiants

Brand new catalog of Red SG, Sarah Healy et al., arXiv:2307.08785

Many candidates at a few kpc from the Sun.

See also → <u>M. Mukhopadhyay et al.</u>, <u>Astrophys.J. 899 (2020)</u>

Supergiants

Brand new catalog of Red SG, Sarah Healy et al., <u>arXiv:2307.08785</u>

Common Name	Distance (pc)
${\rm Spica} \ / \ \alpha \ {\rm Virginis}$	77(4)
ζ Ophiuchi	112(2)
lpha Lupi	143(3)
${\rm Antares} \ / \ \alpha \ {\rm Scorpii}$	169(30)
${\rm Enif} \; / \; \epsilon \; {\rm Pegasi}$	211(6)
Betelgeuse / α Orionis	${\bf 222}^{+48}_{-34}$
ζ Cephei	256(6)
${\rm Rigel} \ / \ \beta \ {\rm Orionis}$	264(24)
${ m S}$ Monocetotis ${ m A}({ m B})$	282(40)
CE Tauri / 119 Tauri	326(70)

Data for table from \rightarrow <u>M. Mukhopadhyay</u> <u>et al., Astrophys.J. 899 (2020)</u>

Supergiant Axions

... however, in the case of Betelgeuse (~200 pc from us) $\Rightarrow 0(10^3)$ axions cm⁻² s⁻¹.

Too little for current experiments!

Supergiant Axions

Model	Phase	t [rm] log L		$ff_{1} = T_{eff}$	Primakoff		Bremsstrahlung			Compton			
model		$\iota_{\rm cc}$ [yr]	$\log_{10} \overline{L_{\odot}}$	$\log_{10} \frac{-\epsilon_{\rm H}}{\rm K}$	C^P	E_0^P [keV]	β^P	C^B	E_0^B [keV]	β^B	C^C	E_0^C [keV]	β^C
0	He burning	155000	4.90	3.572	1.36	50	1.95	1.3E-3	35.26	1.16	1.39	77.86	3.15
1	before C burning	23000	5.06	3.552	4.0	80	2.0	2.3E-2	56.57	1.16	8.55	125.8	3.12
2	before C burning	13000	5.06	3.552	5.2	99	2.0	6.4E-2	70.77	1.09	17.39	156.9	3.09
3	before C burning	10000	5.09	3.549	5.7	110	2.0	8.9E-2	76.65	1.08	22.49	169.2	3.09
4	before C burning	6900	5.12	3.546	6.5	120	2.0	0.136	85.15	1.06	31.81	186.4	3.09
5	in C burning	3700	5.14	3.544	7.9	130	2.0	0.249	97.44	1.04	50.62	210.4	3.11
6	in C burning	730	5.16	3.542	12	170	2.0	0.827	129.17	1.02	138.6	269.1	3.17
7	in C burning	480	5.16	3.542	13	180	2.0	0.789	134.54	1.02	153.2	279.9	3.15
8	in C burning	110	5.16	3.542	16	210	2.0	1.79	151.46	1.02	252.7	316.8	3.17
9	in C burning	34	5.16	3.542	21	240	2.0	2.82	181.74	1.00	447.5	363.3	3.22
10	between C/Ne burning	7.2	5.16	3.542	28	280	2.0	3.77	207.84	0.99	729.2	415.7	3.23
11	in Ne burning	3.6	5.16	3.542	26	320	1.8	3.86	224.45	0.98	856.4	481.2	3.11

$$\frac{d\dot{N}_a}{dE} = \frac{10^{42}}{\text{keVs}} \left[C^P g_{11}^2 \left(\frac{E}{E_0^P} \right)^{\beta^P} e^{-(\beta^P + 1)E/E_0^P} + (P \to B, C; g_{11} \to g_{13}) \right]$$

Flux increases adding g_{ae} coupling

M. Xiao, MG, et al., Phys. Rev. D 106 (2022)

The Very Last Stages of a Monster Star

$t_{\rm collpase} - t [{ m s}]$	C	$E_0 \; [{ m MeV}]$	β
0	1.68×10^3	2.54	2.50
10^{2}	1.19×10^3	2.08	2.49
10^{3}	$9.33 imes 10^2$	1.77	2.50
10^4	5.98×10^2	1.57	2.47
10^{5}	1.63×10^2	1.13	2.10
10^{6}	2.15×10^2	0.85	2.39
107	7.31×10^1	0.61	2.10
		, ,	
-			

Flux grows substantially in last seconds

$$\frac{d^2 n_{\gamma}}{dt dE} = \frac{10^{47} C g_{10}^2 P_{a\gamma}}{4\pi d^2} \left(\frac{E}{E_0}\right)^{\beta} e^{-(\beta+1)\frac{E}{E_0}} \text{ cm}^{-2} \text{ s}^{-1} \text{MeV}^{-1}$$

Mori, Takiwaki and Kotake, Phys.Rev.D 105 (2022)

Supergiant Axions

Axions can convert into photons in the magnetic field between us and the star

$$P_{a\gamma} = 8.7 \times 10^{-6} g_{11}^2 \left(\frac{B_{\rm T}}{1 \ \mu \rm{G}}\right)^2 \left(\frac{d}{197 \, \rm{pc}}\right)^2 \frac{\sin^2(qd)}{(qd)^2} \qquad \text{(Assuming B uniform)}$$

$$g_{11} \le 6.5 \text{ from}$$
helioscope (CAST)
bound
$$a_{\rm max} = \frac{\gamma}{B_{\rm ext}}$$

Hard X-ray to Soft gamma-Ray detectors

Huge interest in the low MeV region (see, e.g., ICRC talk by Andreas Zoglauer (2021)

The High Energy X-ray Probe (HEX-P)

Instrument and Mission Profile paper last week (on Dec 7)

Same target energy as NuSTAR.

3 co-aligned X-ray telescopes designed to cover the 0.2 – 80 keV bandpass

The Very Last Stages of a Monster Star

Mori, Takiwaki and Kotake, Phys.Rev.D 105 (2022)

Other γ ray telescopes such as INTEGRAL are not performing surveys.

Stellar Axion Flux, $g_{a\gamma} = 0.6 \times 10^{-10} \,\text{GeV}^{-1}$, $m_a = 0$

General criterion (Raffelt) from observed ν -signal form SN 1987A:

The truly

monster stars

- $\varepsilon_x \lesssim 10^{19} \,\mathrm{erg} \,\mathrm{g}^{-1} \mathrm{s}^{-1}$
- @ $\rho = 3 \times 10^{14} \,\mathrm{g \, cm^{-3}}, T = 30 \,\mathrm{MeV}$

Corresponds to $\sim 10^{56}$ axions/s.

About ~ 10^{13} cm⁻² s⁻¹ axions on Earth from Betelgeuse

Huge flux... but short!

Supernova axions

Traditional axion production Nuclear Bremsstrahlung

P. Carenza et al., JCAP 10 (2019) 10, 016

Most significant recent event: a new estimate of the pion abundance in SN environment

 $Y_{\pi^-} \gg Y_{\pi^0} \gg Y_{\pi^+}$ since pions participate in the **equilibrium** between nucleons $\mu_{\pi} = \mu_n - \mu_p$ plus **beyond-ideal-gas** corrections

 $\Rightarrow Y_{\pi^-} \approx 1-3\%$

Pion processes $\pi^- + N \rightarrow N + a$ may dominate

P. Carenza et al., Phys.Rev.Lett. 126 (2021); A. Lella et al, *Phys.Rev.D* 107 (2023) 10

Supernova axions

$$\mathcal{L}_{int} = g_a \frac{\partial_{\mu} a}{2m_N} \left[C_{ap} \bar{p} \gamma^{\mu} \gamma_5 p + C_{an} \bar{n} \gamma^{\mu} \gamma_5 n + \frac{C_{a\pi N}}{f_{\pi}} (i\pi^+ \bar{p} \gamma^{\mu} n - i\pi^- \bar{n} \gamma^{\mu} p) + L_{an} \left(\bar{p} \Delta_{\mu}^+ + \overline{\Delta_{\mu}^+} p + \bar{n} \Delta_{\mu}^0 + \overline{\Delta_{\mu}^0} n \right) \right]$$

$$A. Lella et al., Phys.Rev.D 107 (2023)$$

Leads to a variety of processes, studied very recently

Precise **fits exist** in terms of a few parameters.

Still large uncertainties on the parameters

Uncertainties

. . .

- Thermal and density profiles
- Pion mass in medium
- Pion condensate

Alessandro Lella et al., in preparation

Detecting SN axions

Direct Detection

\rightarrow Cherenkov

- A. Lella et al., <u>arXiv:2306.01048;</u>
- Vonk, Guo, Meißner, <u>Phys.Rev.D</u> <u>105 (2022)</u>
- Li, Hu, Guo, Meißner, <u>2312.02564</u>
- P. Carenza et al., <u>arXiv:2306.17055</u>

 \rightarrow Colliders

- S. Asai, Y. Kanazawa, T. Moroi, T.
 Sichanugrist <u>Phys.Lett.B 829 (2022)</u>
- \rightarrow Heliscopes
- Ge, Hamaguchi, Ichimura, Ishidoshiro, Kanazawa, <u>JCAP 11 (2020)</u>;

Indirect detection

Through photon oscillations in $B_{\rm ext}$

- F. Calore et al. e-Print: <u>2306.03925</u>
- A. Lella et al. In preparation
- Meyer et al. <u>Phys.Rev.Lett. 118 (2017)</u>

Detecting SN axions

Direct Detection:

 \rightarrow Heliscopes

New research proposal @UNIZAR, lead by <u>Juan Anton</u> <u>Garcia Pascual</u>, for the construction of the appropriate detector for these high energies

Will we detect Stellar Axions with Next Gen. Experiments?

Sun	 High potential to detect ALPs (including QCD axions) if m_a ≤ 100 meV and g_{aγ} ~ stellar bounds Possibility to explore solar magnetic field through g_{aγ} but likely not in next generation experiments Unlikely axions discover through g_{ae} in the near future Several channels through g_{aN}. Some tension with SN1987A
Other stars	 Production can be much larger than in the Sun Require magnetic fields to compensate for large distance ⇒ Explore mostly very low mass region but sensitive to very small couplings
SN	 Huge production but for short time. Several nearby candidates Direct detection may be possible but difficult At very low mass, strong potential for detection with γ-ray observatories (e.g., Fermi LAT) At high mass, possible detection of decay products (e.g., Fermi LAT)

Conclusions and final comments

 Important progress in last years in the attempts to detect the stellar axion flux

• Axions with couplings at the current thresholds would excellent astrophysical messengers.