

Finanziato dall'Unione europea NextGenerationEU

Missione 4 Istruzione e Ricerca

Giacomo Landini (IFIC, Valencia)

Axion quality: problems and possible solutions

25/01/2024

Finanziato dall'Unione europea NextGenerationEU

AxionOrigins Kickoff Meeting January 25th-26th, 2024 - INFN, Frascati

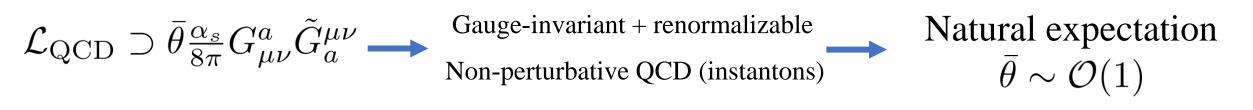
Axion quality: problem and solutions

partially based on M.Ardu, L.Di Luzio, GL, A.Strumia, D.Teresi, J.W.Wang arXiv [2007.12663]

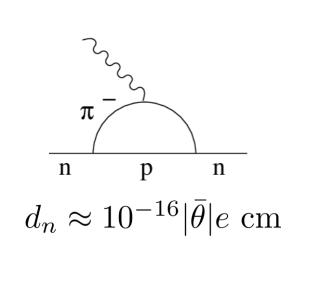
Giacomo Landini INFN-LNF, Frascati 25/01/24

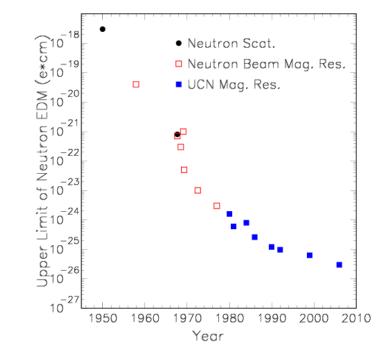
The Strong CP problem

The QCD Lagrangian violates CP symmetry



Prediction: electric dipole moment for the neutron





Upper bound $\bar{\theta} \leq 10^{-10}$

Why so small??

A new global chiral U(1) symmetry + scalar field Φ

A new global chiral U(1) symmetry + scalar field Φ

1) Spontaneously broken \longrightarrow a new Goldstone boson: the *axion* $\Phi(x) \simeq f_a e^{ia(x)/f_a}$ $a(x) \stackrel{PQ}{\rightarrow} a(x) + \gamma f_a$

A new global chiral U(1) symmetry + scalar field Φ

1) Spontaneously broken \longrightarrow a new Goldstone boson: the *axion* $\Phi(x) \simeq f_a e^{ia(x)/f_a}$ $a(x) \stackrel{PQ}{\rightarrow} a(x) + \gamma f_a$

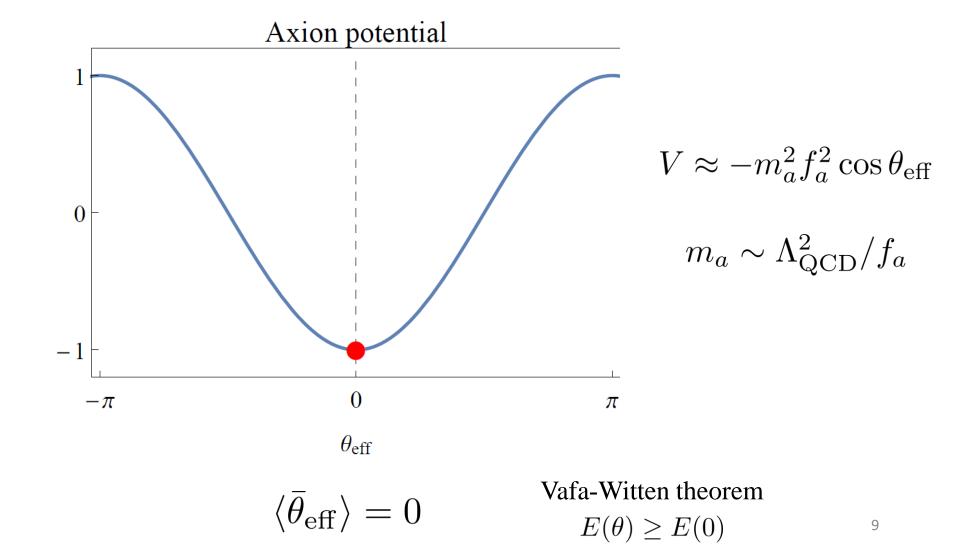
2) QCD anomaly

Colored fermions with *chiral* U(1) charges

generates a potential for the axion (shift-symmetry is broken!)

$$\mathcal{L}_{\text{QCD}}^{\text{PQ}} \supset \theta_{\text{eff}}(x) \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \qquad \qquad \theta_{\text{eff}}(x) \equiv \bar{\theta} - \frac{a(x)}{f_a}$$

The QCD potential relaxes to the CP-conserving minimum



Global symmetries

Global symmetries are not fundamental but accidental

Gauge theory perspective

The Lagrangian must be gauge-invariant

Accidental global symmetries at the renormalizable level

 $\mathcal{L} = \mathcal{L}^{(4)}$ Ex: baryon/lepton number in the SM

Broken by higher-dimensional operators (UV physics)

$$\Delta \mathcal{L}_{\mathrm{UV}} \sim \frac{1}{\Lambda_{\mathrm{UV}}^{d-4}} \mathcal{O}^{[d]}$$

Global symmetries

Global symmetries are not fundamental but accidental

Quantum Gravity conjectures, based on Black Hole physics

No global symmetry can exist in a theory of Quantum Gravity [D.Harlow, H. Ooguri '18]

PQ symmetry arises accidentally at low-energy (*How?*)

New gauge symmetries?

PQ symmetry arises accidentally at low-energy (*How*?)

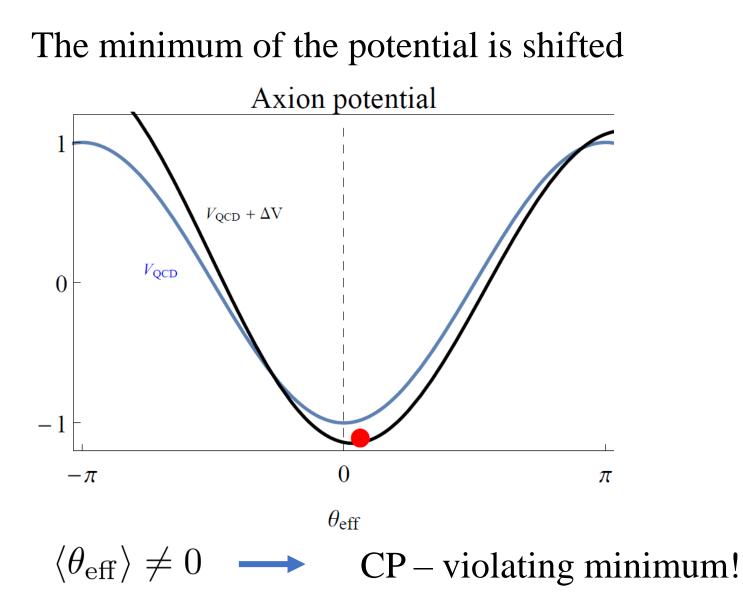
UV physics (gravity?) violates PQ symmetry

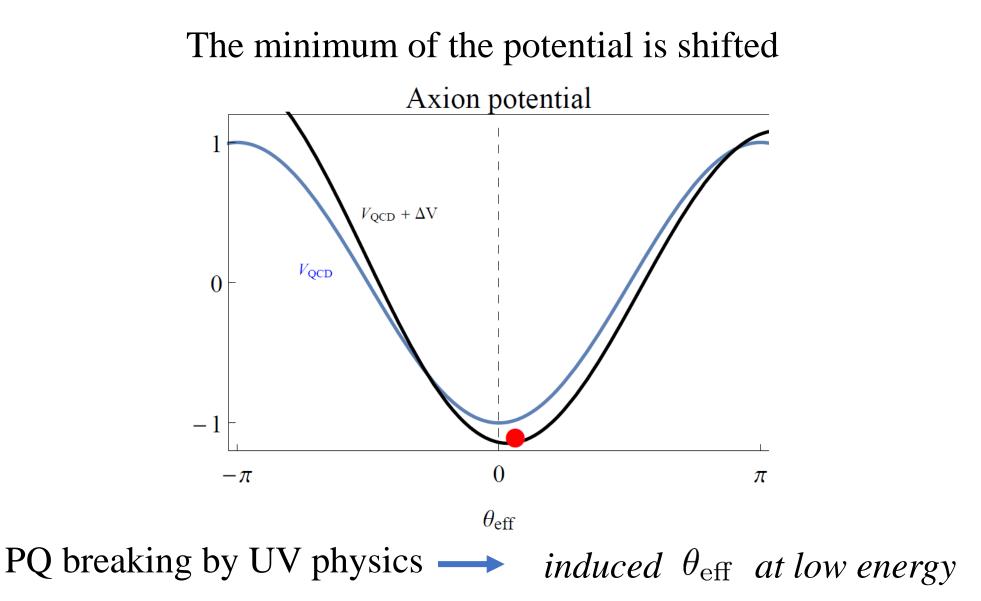
New gauge symmetries?

PQ symmetry arises accidentally at low-energy (*How*?) ► New gauge symmetries? UV physics (gravity?) violates PQ symmetry This generates Peccei-Quinn breaking operators at low-energy $\Delta \mathcal{L}_{\rm UV} \sim \frac{1}{\Lambda_{\rm UV}^{d-4}} \mathcal{O}^{[d]}$

New contribution to the axion potential (shift-symmetry is broken)

$$\Delta V_{\rm UV}(\theta_{\rm eff}) \sim \Lambda_{\rm UV}^4 \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^d$$





We solve the Strong CP problem only if

 $\langle \theta_{\rm eff} \rangle < 10^{-10}$ (neutron EDM)

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

UV PQ-breaking physics

We solve the Strong CP problem only if

$$\langle \theta_{\mathrm{eff}}
angle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4 \ \rm QCD$$

UV PQ-breaking physics

We solve the Strong CP problem only if

$$\langle heta_{\mathrm{eff}}
angle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4 \ \rm QCD$$

UV PQ-breaking physics Experimental bound

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$
$$f_a \ll \Lambda_{\rm UV}$$

The lowest-dimensional PQ-breaking operators are the most dangerous!

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

For physically well-motivated scales Dark Matter $f_a \sim 10^{9-11} \text{ GeV}$ op Gravity $\Lambda_{\rm UV} \sim M_{\rm Pl}$

PQ must be **preserved** up to operators of dimension $d \ge 10 - 12$ (high-quality symmetry)

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potental this translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

For physically well-motivated scales
Dark Matter
$$f_a \sim 10^{9-11} \text{ GeV}$$

Gravity $\Lambda_{\text{UV}} \sim M_{\text{Pl}}$
PQ-breaking operator with
 $d < 10 - 12 \text{ must be forbidden}$

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

Low-scale f_a

<u>*Challenge*</u>: evade astrophysical bounds $f_a \gtrsim 10^8 \text{ GeV}$

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

Low-scale f_a

<u>Challenge</u>: evade astrophysical bounds $f_a \gtrsim 10^8 \text{ GeV}$ <u>possible realization</u>

Modified $m_a - f_a$ relation

extra contribution to m_a from hidden gauge sector with PQ anomaly $\Lambda_D \gg \Lambda_{QCD}$

May arise in mirror SM (or mirror QCD or mirror GUT) models

[Rubakov '97, Berezhiani, Gianfagna, Giannotti '01, Gianfagna Giannotti Nesti '04, Gaillard, Gavela et al. '18, ...]

$$\lambda \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

Low-scale f_a

Gravitational suppression of coupling

If PQ-breaking operators are generated by non-perturbative gravitational effects $\lambda \Delta \mathcal{L}_{\text{UV}}, \qquad \lambda \sim e^{-S}$

Studied in the context of Euclidian Wormholes

[Lee '88, Giddings, Strominger '88] $S \sim M_{\rm Pl}/f_a$ No quality problem

[Abbott, Wise '88, Alvey, Escudero '20] $S \sim \log M_{\rm Pl}/f_a$ Quality problem

Solutions to the quality problem $\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$ Low-scale f_a Gravitational suppression of coupling Gauge protection

Low-dimensional PQ-breaking operators are forbidden by gauge invariance

1. New gauge group *unrelated* to SM flavor

2. New gauge group *related* to SM flavor

Discrete/Abelian gauge symmetry

 $\mathbb{Z}_n: \Phi \to e^{i\frac{2\pi}{n}}\Phi \longrightarrow \Delta \mathcal{L}_{\mathrm{UV}} = \frac{\Phi^n}{\Lambda_{\mathrm{UV}}^{n-4}} \longrightarrow \text{We need } n \ge 10$

It can emerge from a U(1) gauge symmetry:

[Krauss and Wilczek '89, Dias et al. '03] [Carpenter et al.'09, Harigaya et al. '13]

$$\begin{split} \Phi &\to e^{i\alpha} \Phi & \langle S \rangle : \ U(1) \to Z_n \\ S &\to e^{in\alpha} S & \alpha = \frac{2\pi}{n} \end{split}$$

Abelian gauge U(1):
$$\Phi_1 \to e^{iq_1\alpha}$$

[Barr and Seckel '92] $\Phi_2 \to e^{iq_2\alpha}$ \longrightarrow $\Delta \mathcal{L}_{UV} = \frac{(\Phi_1^{\dagger})^{q_2}(\Phi_2)^{q_1}}{\Lambda_{UV}^{q_1+q_2-4}}$

 \blacksquare We need $q_1 + q_2 \ge 10$

Non Abelian gauge symmetry

[Di Luzio, Ubaldi and Nardi '17]

$$G = SU(N) \otimes SU(N) + \text{scalar field } Y \sim (N, \overline{N})$$

Renormalizable potential $V(Y) = f(Tr[Y^{\dagger}Y], Tr[Y^{\dagger}YY^{\dagger}Y])$ $N \ge 4$ \longrightarrow Accidental global U(1) $Y \to e^{i\alpha}Y$

→ promoted to a PQ symmetry introducing new colored fermions charged under G

PQ broken by
$$\Delta \mathcal{L}_{\text{UV}} = \frac{\det Y}{\Lambda_{\text{UV}}^{N-4}} \propto \epsilon^{i_1,\dots,i_N} \epsilon_{j_1,\dots,j_N} Y_{i_1}^{j_1} \dots Y_{i_N}^{j_N}$$

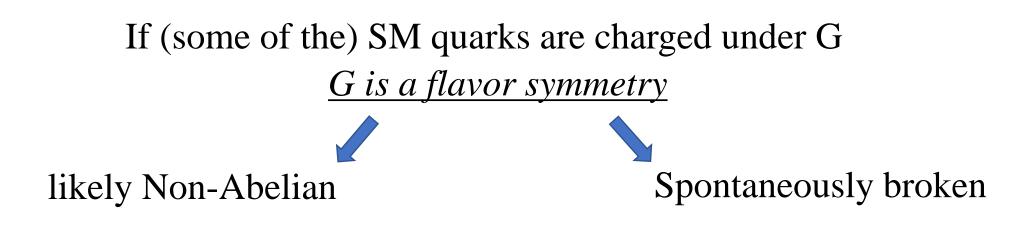
 $\longrightarrow N \ge 10$

Dangerous heavy colored relics in post-inflationary scenario

See related discussion later

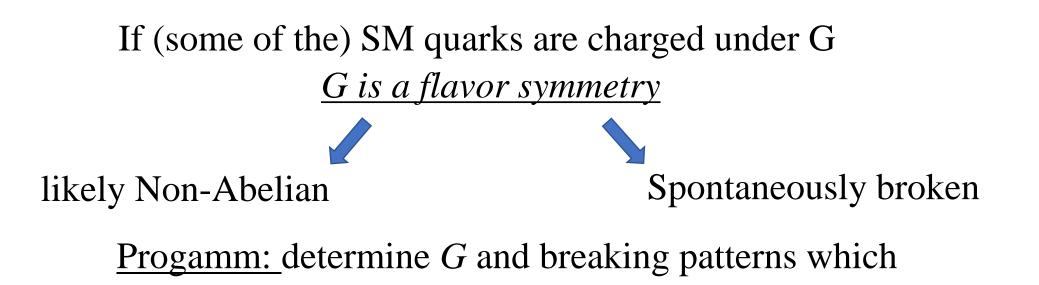
PQ and flavor?

A new gauge group G acts on scalars which couple to (exotic or SM) quarks



PQ and flavor?

A new gauge group G acts on scalars which couple to (exotic or SM) quarks



(1) predict an accidental U(1) symmetry origin of PQ (

(2) protect the U(1) symmetry from UV-breaking sources PQ quality(3) reproduce the fermion masses/mixing of the SM Flavor

 \rightarrow multiple scalar vevs to provide high-scale PQ and SM flavor scales $_{36}$

Axion quality from flavor [Darmé, Nardi '21] [Darmé, Nardi, Smarra '22]

Rectangular gauge groups

We saw before that

 $G = SU(N) \otimes SU(N) + \text{scalar field } Y \sim (N, \overline{N})$

provides an accidental PQ broken by

$$\Delta \mathcal{L}_{\rm UV} = \frac{detY}{\Lambda_{\rm UV}^{N-4}} \propto \epsilon^{i_1,\dots,i_N} \epsilon_{j_1,\dots,j_N} Y_{i_1}^{j_1} \dots Y_{i_N}^{j_N}$$

solving the quality problem for

 $N \ge 10$

Axion quality from flavor [Darmé, Nardi '21] [Darmé, Nardi, Smarra '22]

Rectangular gauge groups

Observation

 $G_F = SU(m) \otimes SU(n) + \text{scalar field } Y \sim (m, \bar{n}) \qquad m \neq n$ All operators $\propto \epsilon^{i_1, \dots, i_N} \epsilon_{j_1, \dots, j_N} Y_{i_1}^{j_1} \dots Y_{i_N}^{j_N}$ vanish identically $\implies \text{Exact accidental U(1)} \quad Y \to e^{i\alpha}Y$

Axion quality from flavor [Darmé, Nardi '21] [Darmé, Nardi, Smarra '22]

Rectangular gauge groups

Observation

 $G_F = SU(m) \otimes SU(n) + \text{scalar field } Y \sim (m, \bar{n}) \qquad m \neq n$ All operators $\propto \epsilon^{i_1, \dots, i_N} \epsilon_{j_1, \dots, j_N} Y_{i_1}^{j_1} \dots Y_{i_N}^{j_N}$ vanish identically

 \implies Exact accidental U(1) $Y \rightarrow e^{i\alpha}Y$

(i) We need to add additional scalars to avoid massless colored fermions(ii) The accidental U(1) is not exact but...

(iii) ...we can protect it up to D=10 avoiding a too large number of chiral new quarks

keep $(m, n) \leq 3$ to interpret G_F as a flavor symmetry!

Axion quality from flavor [Darmé, Nardi '21] [Darmé, Nardi, Smarra '22] <u>Rectangular flavor gauge groups</u> $G_F \otimes U(1)$ with $G_F = SU(m) \otimes SU(n)$ $m \neq n$ $Y \sim (m, \bar{n})$ + additional scalars/chiral quarks SM quarks are charged under the flavor gauge group *Example* $SU(3) \otimes SU(2) \otimes U(1)_F$ $q_L \sim (3,1), \ u_R \sim (1,2), \ t_R \sim (1,1), \ Q_L \sim (1,1),$ $Y \sim (\mathbf{3}, \bar{\mathbf{2}}), \quad Z \sim (\mathbf{3}, \mathbf{1}), \quad X \sim (\mathbf{1}, \bar{\mathbf{2}}).$ $U_R \sim (3,1), U_L \sim (1,2), T_L \sim (1,1), Q_R \sim (1,1).$ Possible signatures: light flavored gauge bosons See next talk by Clemente Smarra!

SO(10) GUT

SO(10) GUT

 $\mathcal{L}_{Y=0} + \mathcal{L}_{Y} = y_{10}\psi_{16}\psi_{16}\phi_{10} + \tilde{y}_{10}\psi_{16}\psi_{16}\phi_{10}^* + y_{1\bar{2}6}\psi_{16}\psi_{16}\phi_{1\bar{2}6} + h.c$ SM fermions + RHNs *Flavor symmetry* Accidental global $U(3) = SU(3)_f \otimes U(1)_{PQ}$ $PQ(\phi_{10}) = PQ(\phi_{1\bar{2}6}) = -2PQ(\psi_{16})$ If $y_i \to 0$ Anomalous under QCD SSB due to $\phi_{16}, \phi_{1\overline{2}6}$

SO(10) GUT

 $\mathcal{L}_{Y=0} + \mathcal{L}_{Y} = y_{10}\psi_{16}\psi_{16}\phi_{10} + \tilde{y}_{10}\psi_{16}\psi_{16}\phi_{10}^* + y_{1\bar{2}6}\psi_{16}\psi_{16}\phi_{1\bar{2}6} + h.c$ SM fermions + RHNs *Flavor symmetry* Accidental global $U(3) = SU(3)_f \otimes U(1)_{PQ}$ If $y_i \to 0$ $PQ(\phi_{10}) = PQ(\phi_{1\bar{2}6}) = -2PQ(\psi_{16})$ Anomalous under QCD SSB due to $\phi_{16}, \phi_{1\overline{2}6}$ <u>Gauging of flavor symmetry</u> $SU(3)_f$

 $U(1)_{PQ}$ is promoted to an (accidental) symmetry of the full renormalizable Lagrangian

Field	Lorentz	SO(10)	\mathbb{Z}_4	$\mathrm{SU}(3)_f$	\mathbb{Z}_3	$U(1)_{PQ}$
ψ_{16}	(1/2, 0)	16	i	3	$e^{i2\pi/3}$	1
$\psi_1^{1,,16}$	(1/2, 0)	1	1	$\overline{3}$	$e^{i4\pi/3}$	0
ϕ_{10}	(0, 0)	10	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{16}	(0, 0)	16	i	$\overline{3}$	$e^{i4\pi/3}$	-1
$\phi_{\overline{126}}$	(0, 0)	$\overline{126}$	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{45}	(0,0)	45	1	1	1	0

 $SU(3)_f$ provides protection from UV sources

PQ-breaking operators allowed by $SO(10) \otimes SU(3)_f$

$$\begin{array}{ll} \phi_{10}^6 & (d=6) \\ \phi_{126}^6 & (d=6) \\ \phi_{16}^6 \phi_{10}^3 & (d=9) \\ \phi_{16}^6 \phi_{126}^3 & (d=9) \\ \phi_{16}^{12} & (d=12) \end{array}$$

Field	Lorentz	SO(10)	\mathbb{Z}_4	$\mathrm{SU}(3)_f$	\mathbb{Z}_3	$U(1)_{PQ}$
ψ_{16}	(1/2, 0)	16	i	3	$e^{i2\pi/3}$	1
$\psi_1^{1,,16}$	(1/2, 0)	1	1	$\overline{3}$	$e^{i4\pi/3}$	0
ϕ_{10}	(0, 0)	10	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{16}	(0, 0)	16	i	$\overline{3}$	$e^{i4\pi/3}$	-1
$\phi_{\overline{126}}$	(0, 0)	$\overline{126}$	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{45}	(0,0)	45	1	1	1	0

 $SU(3)_f$ provides protection from UV sources

PQ-breaking operators allowed by $SO(10) \otimes SU(3)_f$

 $\phi_{10} \text{ can only develop} \\ \text{electroweak VEV} \qquad \checkmark \qquad \phi_{16}^{6} \phi_{10}^{3} \qquad (d = 6) \\ \phi_{16}^{6} \phi_{10}^{3} \qquad (d = 9) \\ \phi_{16}^{6} \phi_{126}^{3} \qquad (d = 9) \\ \phi_{16}^{6} \phi_{126}^{3} \qquad (d = 9) \\ \phi_{16}^{12} \phi_{16}^{12} \qquad (d = 12)$

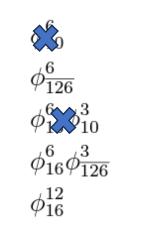
Field	Lorentz	SO(10)	\mathbb{Z}_4	$\mathrm{SU}(3)_f$	\mathbb{Z}_3	$U(1)_{PQ}$
ψ_{16}	(1/2, 0)	16	i	3	$e^{i2\pi/3}$	1
$\psi_1^{1,,16}$	(1/2, 0)	1	1	$\overline{3}$	$e^{i4\pi/3}$	0
ϕ_{10}	(0, 0)	10	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{16}	(0, 0)	16	i	$\overline{3}$	$e^{i4\pi/3}$	-1
$\phi_{\overline{126}}$	(0, 0)	$\overline{126}$	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{45}	(0, 0)	45	1	1	1	0

 $SU(3)_f$ provides protection from UV sources

PQ-breaking operators allowed by $SO(10) \otimes SU(3)_f$

Electroweak VEV insertions are needed to project on SM vacuum

Negligible contribution to $\theta_{\rm eff}$

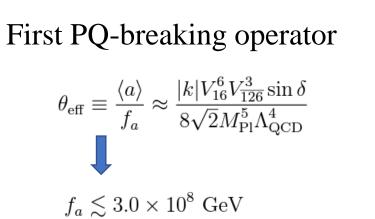


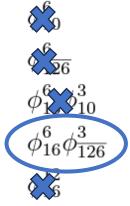
(d = 6)(d = 6)(d = 9)(d = 9)(d = 12)

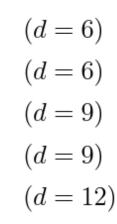
Field	Lorentz	SO(10)	\mathbb{Z}_4	$\mathrm{SU}(3)_f$	\mathbb{Z}_3	$U(1)_{PQ}$
ψ_{16}	(1/2, 0)	16	i	3	$e^{i2\pi/3}$	1
$\psi_1^{1,,16}$	(1/2, 0)	1	1	$\overline{3}$	$e^{i4\pi/3}$	0
ϕ_{10}	(0, 0)	10	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{16}	(0, 0)	16	i	$\overline{3}$	$e^{i4\pi/3}$	-1
$\phi_{\overline{126}}$	(0, 0)	$\overline{126}$	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
ϕ_{45}	(0, 0)	45	1	1	1	0

 $SU(3)_f$ provides protection from UV sources

PQ-breaking operators allowed by $SO(10) \otimes SU(3)_f$







	Field	Lorentz	SO(10)	\mathbb{Z}_4	$\mathrm{SU}(3)_f$	\mathbb{Z}_3	$\rm U(1)_{PQ}$
	$\frac{2}{7}16$	(1/2, 0)	16	i	3	$e^{i2\pi/3}$	1
($\psi_1^{1,,16}$	(1/2, 0)	1	1	$\overline{3}$	$e^{i4\pi/3}$	0
	$\dot{\psi}_{10}$	(0,0)	10	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
	ϕ_{16}	(0, 0)	16	i	$\overline{3}$	$e^{i4\pi/3}$	-1
	$\phi_{\overline{126}}$	(0, 0)	$\overline{126}$	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
	ϕ_{45}	(0,0)	45	1	1	1	0

Interesting feature of the model Exotic *flavored* fermions (anomalons)

Use the same scalar vevs to break simultaneously $SO(10) \otimes U(1)_{PQ} \otimes SU(3)_f$ $SU(3)_f \xrightarrow{\phi_{16}} SU(2)_f \xrightarrow{\phi_{1\bar{2}6}} \mathbf{1}$

	Field	Lorentz	SO(10)	\mathbb{Z}_4	$\mathrm{SU}(3)_f$	\mathbb{Z}_3	$\rm U(1)_{PQ}$
	$\frac{2}{7}16$	(1/2, 0)	16	i	3	$e^{i2\pi/3}$	1
($\psi_1^{1,,16}$	(1/2, 0)	1	1	$\overline{3}$	$e^{i4\pi/3}$	0
	$\dot{\psi}_{10}$	(0,0)	10	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
	ϕ_{16}	(0,0)	16	i	$\overline{3}$	$e^{i4\pi/3}$	-1
	$\phi_{\overline{126}}$	(0, 0)	$\overline{126}$	-1	$\overline{6}$	$e^{i2\pi/3}$	-2
	ϕ_{45}	(0,0)	45	1	1	1	0

Interesting feature of the model Exotic *flavored* fermions
(anomalons)

Use the same scalar vevs to break simultaneously $SO(10) \otimes U(1)_{PQ} \otimes SU(3)_f$ $SU(3)_f \xrightarrow{\phi_{16}} SU(2)_f \xrightarrow{\phi_{1\bar{2}6}} \mathbf{1}$ \longrightarrow massless $\psi_1 \implies$ they get a mass from $\frac{1}{M_{\rm Pl}^2} \psi_1 \psi_1 \phi_{16}^2 \phi_{\overline{126}} \xrightarrow{\phi_{126}} \begin{array}{c} \text{Dark Matter?} \\ \text{Dark radiation?} \\ \text{Flavor puzzle?} \end{array}$

Light exotic fermions could provide new testable dynamics directly related to the solution of PQ quality problem and the flavor puzzle

Remarks

Solutions to the quality problem typically need new physics at high scale (new gauge dynamics, GUT, flavor,...)

How can we test/differentiate the possible models?

We should prefer models with characteristic low-energy signatures ond/or which can explain additional problems (e.g SM flavor structure, Dark Matter)

• exotic flavored fermions/gauge bosons, Dark Matter from gauge confinement,...

[Ardu, Di Luzio, GL, Strumia, Teresi, Wang '20]

Nardi '17]

[Di Luzio, Ubaldi and

Idea similar to

Field	Lorentz		Gauge sy	mmetries	Global a	ccidental	symmetries	
name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

New dark SU(N) gauge group

A new scalar field in the symmetric representation of SU(N)*

Accidental U(1) global symmetry at the renormalizable level $V_4(Tr[S^{\dagger}S], Tr[S^{\dagger}SS^{\dagger}S])$

* it also works for the anti-symmetric representation

Field	Lorentz	Gauge symmetries				Global a	$\operatorname{ccidental}$	symmetries
name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	$\rm U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
$egin{array}{c} \mathcal{Q}_R \ \mathcal{L}_L^{1,2,3} \end{array}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

New colored fermions $Q_{L,R}$ provide the QCD anomaly U(1) is a Peccei-Quinn symmetry

Extra color-singlet fermions $\mathcal{L}_{L,R}$ cancel gauge anomalies

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_{\mathcal{Q}}$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

New colored fermions $Q_{L,R}$ provide the QCD anomaly U(1) is a Peccei-Quinn symmetry

The new fermions have EW charge $Y_Q \pm Y_L \neq 0$ different from [Di Luzio, Ubaldi and Nardi '17]

Field	Lorentz	Gauge symmetries				Global a	$\operatorname{ccidental}$	symmetries
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_{Q}$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	$\mathcal N$	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2,3}$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

SU(N) gauge structure

Additional accidental \mathbb{Z}_2 symmetry

Parity reflection in SU(N) group space $S_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} S_{ij}$ (details in backup slides) $Q_i \to (-1)^{\delta_{1i}} Q_i$

58

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$ar{\mathcal{N}}$	-1/2	0	-1

Gauge invariance forbids PQ-breaking operators below dimension N

$$\frac{\det S}{\Lambda_{\rm UV}^{N-4}} \propto \epsilon^{i_1,\dots i_N} \epsilon^{j_1,\dots j_N} S_{i_1 j_1} \dots S_{i_N j_N}$$

High-Quality if $N \ge 10$

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

Gauge invariance forbids PQ-breaking operators below dimension N

$$\frac{\det S}{\Lambda_{\rm UV}^{N-4}} \propto \epsilon^{i_1,\dots i_N} \epsilon^{j_1,\dots j_N} S_{i_1 j_1} \dots S_{i_N j_N}$$

Interestingly, this protects at the same time the \mathbb{Z}_2 symmetry

Field	Lorentz		Gauge sy	mmetries	Global accidental symmetries			
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	$\rm U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2,3}$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

EW charges allow the decay of heavy colored fermions in the Early Universe

Gauge invariance allows dimension-6 operators $(q_R Q)(e_R \mathcal{L})$ $(q_R Q)(q'_R \mathcal{L})$ if $Y_Q \pm Y_{\mathcal{L}} = \{-1/3, 2/3, -4/3\}$ Decays before BBN: $f_a > \frac{1}{y_Q} \sqrt{\frac{10}{N}} \left(\frac{\Lambda_{\rm UV}}{M_{\rm Pl}}\right)^{4/5} \times 10^{11} \text{ GeV}$

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\rm U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

EW charges allow the decay of heavy colored fermions in the Early Universe

Gauge invariance allows dimension-6 operators $(q_R Q)(e_R \mathcal{L})$ $(q_R Q)(q'_R \mathcal{L})$ if $Y_Q \pm Y_{\mathcal{L}} = \{-1/3, 2/3, -4/3\}$

Post-inflationary PQ-breaking is viable!

Gauge dynamics and Dark Matter

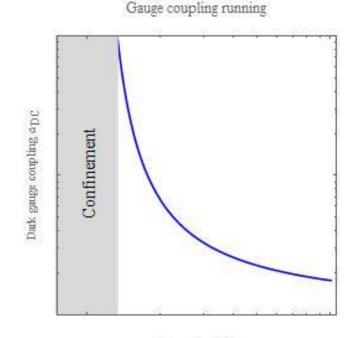
 $\mathcal{S}(x) = \left(\sqrt{N/2}f_a + \cdots\right)e^{ia(x)/f_a} \qquad SU(N) \otimes U(1)_{\mathrm{PQ}} \xrightarrow{f_a} SO(N) \qquad (\mathbb{Z}_2 \text{ is preserved})$

SO(N) dynamics *confines* at lower energy

$$\Lambda_{\rm SO} \approx f_a \exp\left[-\frac{6\pi}{11(N-2)\alpha_{\rm DC}(f_a)}\right]$$

2 energy scales in the model

$$\longrightarrow \Lambda_{\rm SO} \ll f_a$$



Energy in GeV

Asymptotic states must be SO(N) gauge singlets

Gauge dynamics and Dark Matter

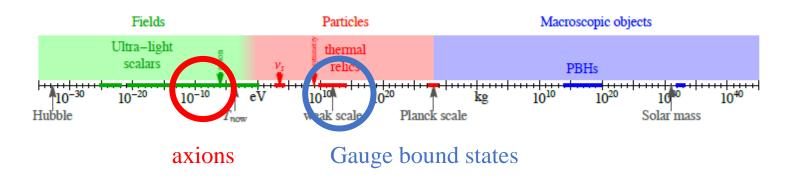
$$SU(N) \otimes U(1)_{PQ} \xrightarrow{f_a} SO(N)$$
 (Z₂ is preserved)

Asymptotic states must be SO(N) gauge singlets

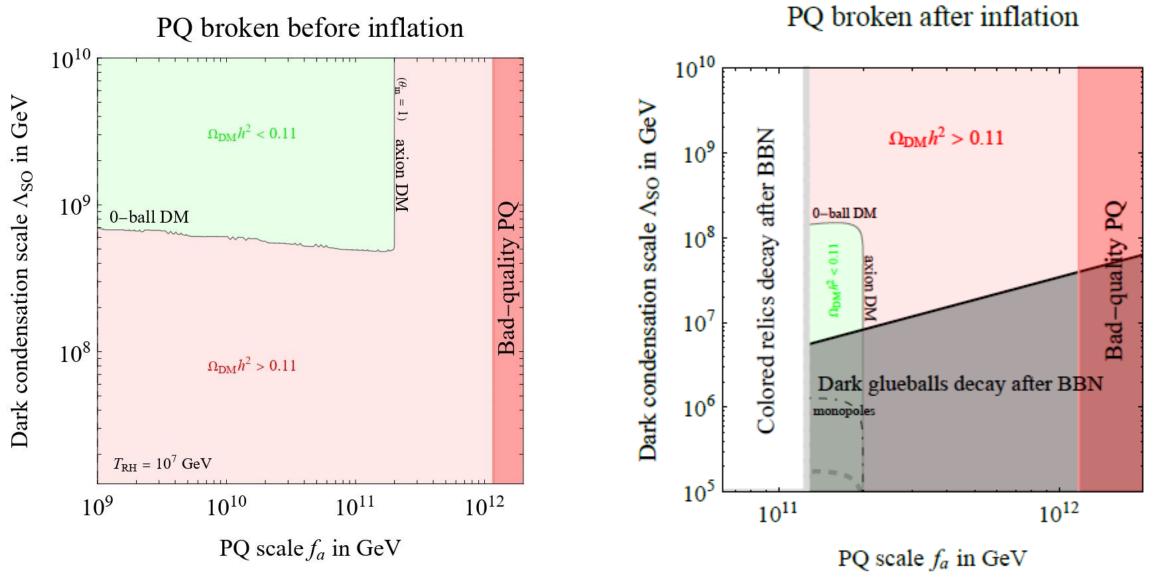
- 1. Axions (cosm. **stable**)
- 2. Gauge bound states even under \mathbb{Z}_2 (unstable)
- 3. Gauge bound states odd under \mathbb{Z}_2 (cosm. stable)

 $\longrightarrow M_{BS} \sim \Lambda_{\rm SO} \sim 10^{8,9} {\rm GeV}$

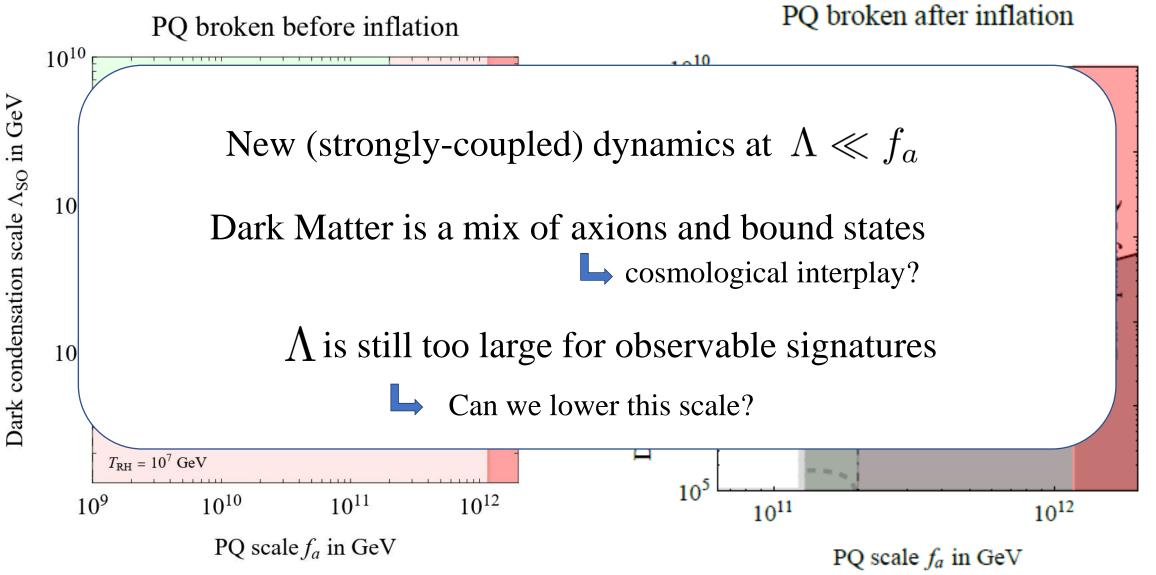
Dark Matter is made by axion and/or heavy gauge bound states



Dark Matter



Dark Matter



Conclusions

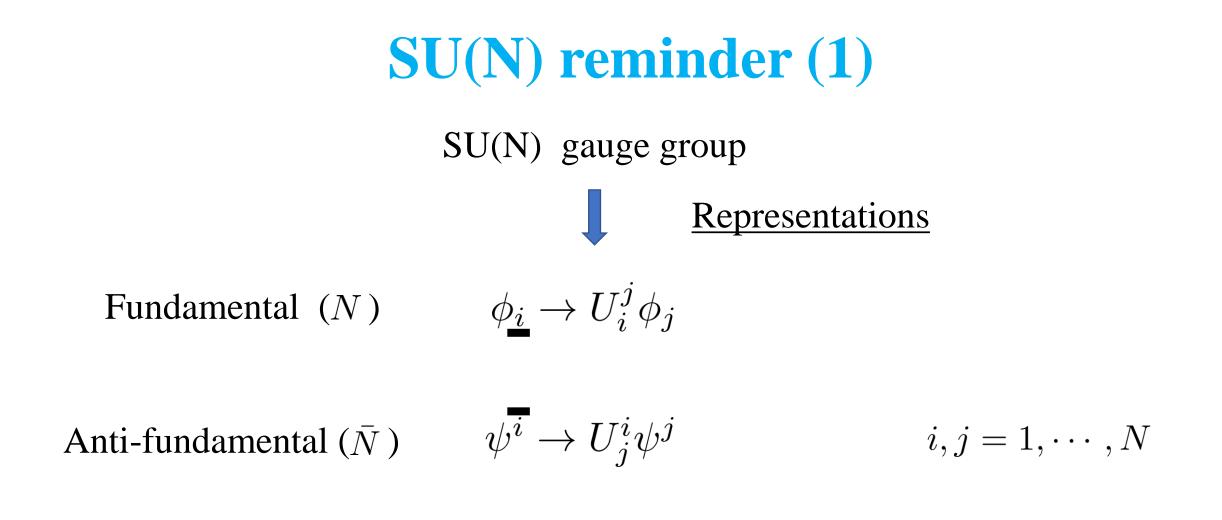
The Peccei-Quinn solution has a problem of UV sensitivity

New gauge symmetry can protect from Peccei-Quinn breaking

We should systematically investigate directions which provide characteristic features and signatures

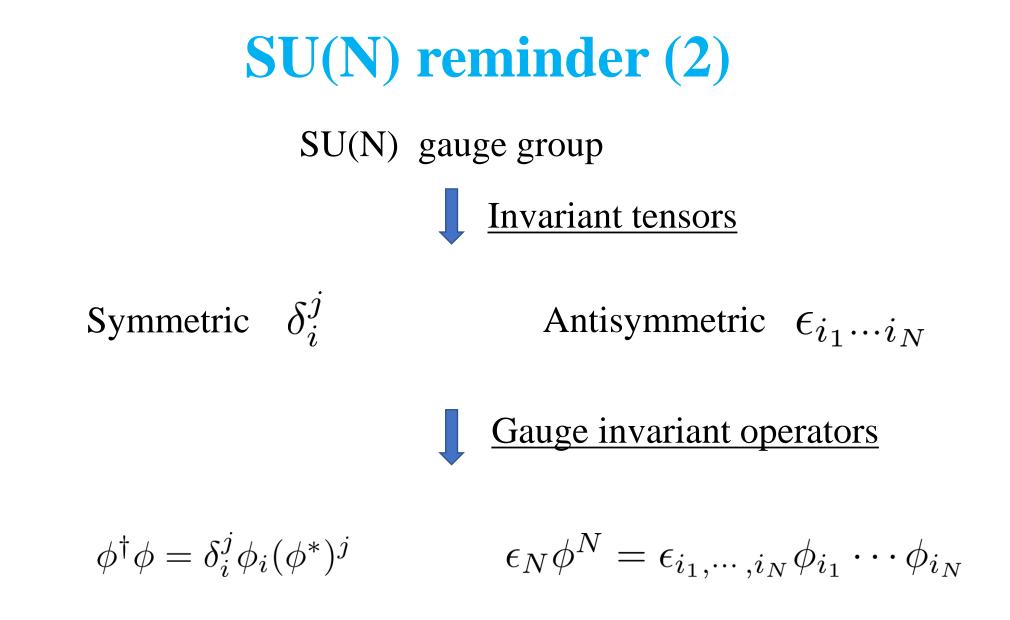
axion-flavor connection, Dark Matter, GUT, light flavoured particles, new dynamics at low scale,...

Backup slides



Symmetric (*NN*)

$$S_{ij} \to U_i^k U_j^l S_{kl}$$



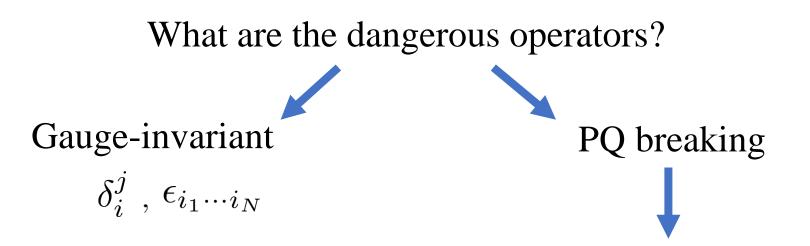
. . .

N-ality rule (1)

What are the dangerous operators?

Gauge-invariant PQ breaking δ_i^j , $\epsilon_{i_1\cdots i_N}$

N-ality rule (1)



PQ charge is proportional to *N-ality*

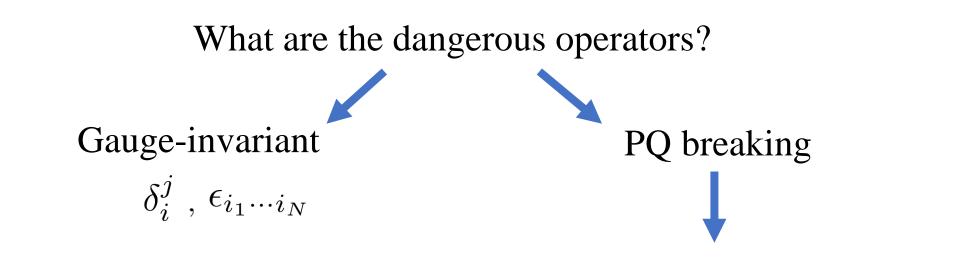
$$\mathrm{PQ}[\Phi_{\{i\}}^{\{j\}}] \propto \#_{\{i\}} - \#^{\{j\}}$$

N-ality rule (2)

Fiel	d Lorentz		Gauge sy	mmetries	Global accidental symmetries			
nan	ie spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\rm U(1)_{PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
S	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_I	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_{I}	1/2	$-Y_Q$	1	$\bar{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2}$,3 1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2}$,3 1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

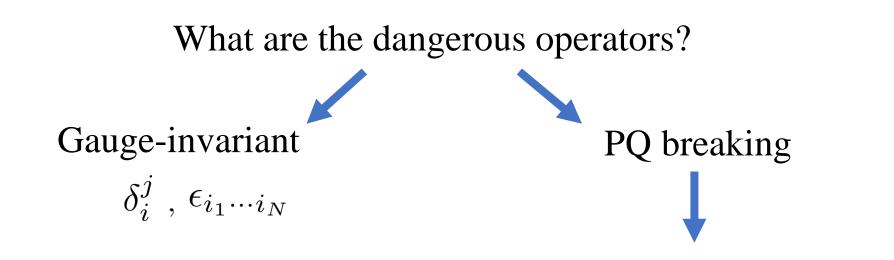
 $PQ[S_{ij}] = \frac{1}{2} \times 2 = 1$ $PQ[Q_i] = \frac{1}{2} \times 1 = \frac{1}{2}$ $PQ[\mathcal{L}^i] = \frac{1}{2} \times (-1) = -\frac{1}{2}$

N-ality rule (3)



PQ breaking = N-ality breaking \checkmark PQ charge is proportional to *N-ality* $\#_{\{i\}} - \#^{\{j\}} \neq 0$ $PQ[\Phi_{\{i\}}^{\{j\}}] \propto \#_{\{i\}} - \#^{\{j\}}$

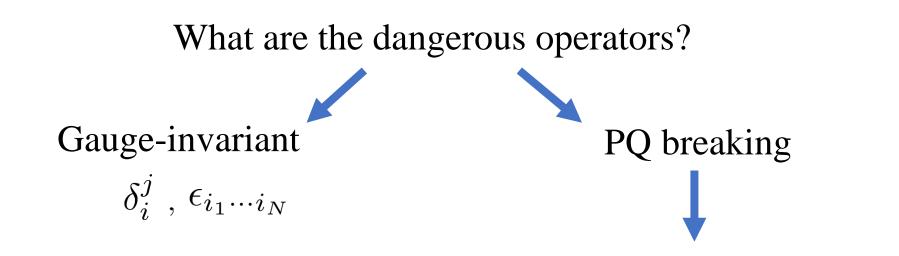
N-ality rule (3)



PQ breaking = N-ality breaking \checkmark PQ charge is proportional to *N-ality* $\#_{\{i\}} - \#^{\{j\}} \neq 0$ $PQ[\Phi_{\{i\}}^{\{j\}}] \propto \#_{\{i\}} - \#^{\{j\}}$

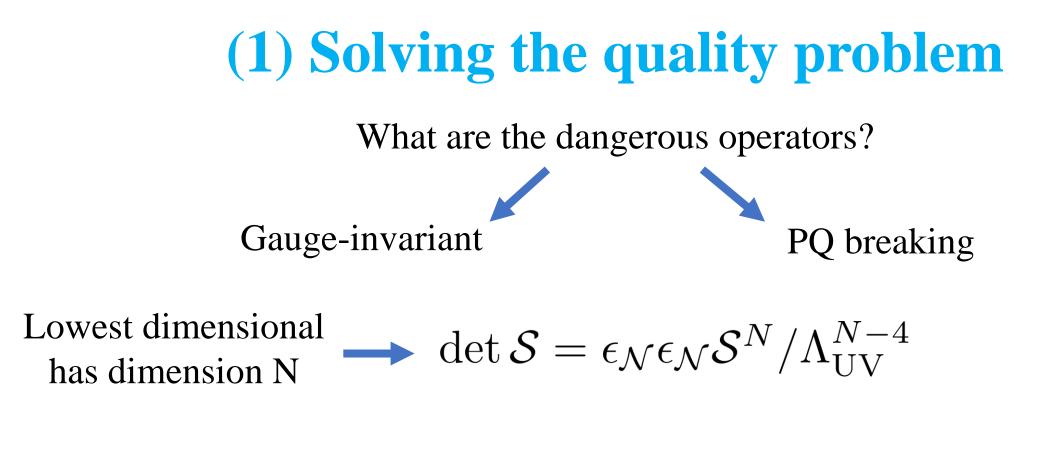
Operators with indices contracted with δ_i^j tensors only can not break PQ

N-ality rule (3)



PQ breaking = N-ality breaking \checkmark PQ charge is proportional to *N-ality* $\#_{\{i\}} - \#^{\{j\}} \neq 0$ $PQ[\Phi_{\{i\}}^{\{j\}}] \propto \#_{\{i\}} - \#^{\{j\}}$

PQ is only broken by operators containing at least one $\epsilon_{i_1\cdots i_N}$ tensor



If N is large enough the PQ quality problem is solved! $N \ge 12 \quad \text{for} \quad f_a \sim 10^{11} \text{ GeV}$

Gauge invariance forbids PQ breaking below dimension N and allows for arbitrary high protection

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_{Q}$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	$\mathcal N$	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}^{1,2,3}_R$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

EW charges allow the decay of heavy colored fermions in the Early Universe

Fermion number symmetries $U(1)_{\mathcal{Q}} \otimes U(1)_{\mathcal{L}}$ $\mathcal{L}_{vuk} = y_{\mathcal{Q}} \mathcal{Q}_L \mathcal{S}^{\dagger} \mathcal{Q}_R + y_{\mathcal{L}}^{ij} \mathcal{L}_L^i \mathcal{S} \mathcal{L}_R^j + h.c.$

Field	Lorentz		Gauge sy	mmetries	Global a	$\operatorname{ccidental}$	symmetries	
name	$_{\rm spin}$	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${\rm SU}(\mathcal{N})$	$\mathrm{U}(1)_{\mathrm{PQ}}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_{\mathcal{L}}$
${\mathcal S}$	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
\mathcal{Q}_L	1/2	$+Y_Q$	1	3	\mathcal{N}	+1/2	+1	0
\mathcal{Q}_R	1/2	$-Y_Q$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
$\mathcal{L}_L^{1,2,3}$	1/2	$+Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	+1
$\mathcal{L}_R^{1,2,3}$	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1

EW charges allow the decay of heavy colored fermions in the Early Universe

Fermion number symmetries

 $U(1)_{\mathcal{Q}} \otimes U(1)_{\mathcal{L}} \to U(1)_{\mathcal{Q}-\mathcal{L}}$

Broken by dimension-6 operators

Gauge invariance allows dimension-6 operators

 $(q_R \mathcal{Q})(e_R \mathcal{L}) \qquad (q_R \mathcal{Q})(q'_R \mathcal{L})$ if $Y_{\mathcal{Q}} \pm Y_{\mathcal{L}} = \{-1/3, 2/3, -4/3\}$

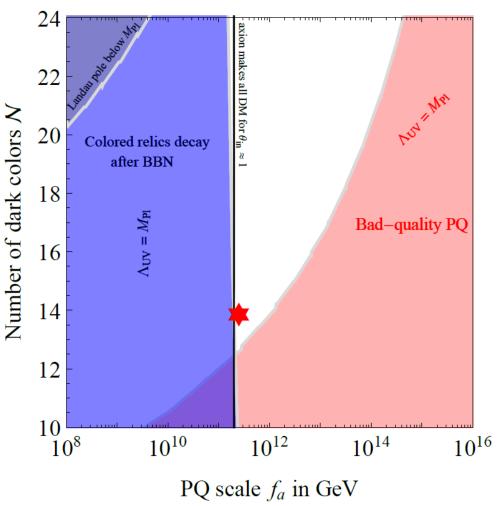
We assume that $m_Q > m_L$ $(m_{Q,L} = y_{Q,L} f_a)$

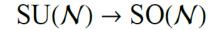
We require that decays of colored fermions occur before BBN

$$\Gamma_{\mathcal{Q}} \simeq \frac{1}{13 \text{ sec}} \left(\frac{m_{\mathcal{Q}}}{2 \times 10^{11} \text{ GeV}} \right)^5 \left(\frac{M_{\text{Pl}}}{\Lambda_{\text{UV}}} \right)^4 \qquad f_a > \frac{1}{y_{\mathcal{Q}}} \sqrt{\frac{10}{\mathcal{N}}} \left(\frac{\Lambda_{\text{UV}}}{M_{\text{Pl}}} \right)^{4/5} \times 10^{11} \text{ GeV}$$

- Solution to the quality problem
- Colored relics decay before BBN

$$f_a > \frac{1}{y_Q} \sqrt{\frac{10}{N}} \left(\frac{\Lambda_{\rm UV}}{M_{\rm Pl}}\right)^{4/5} \times 10^{11} \,\,{\rm GeV}$$



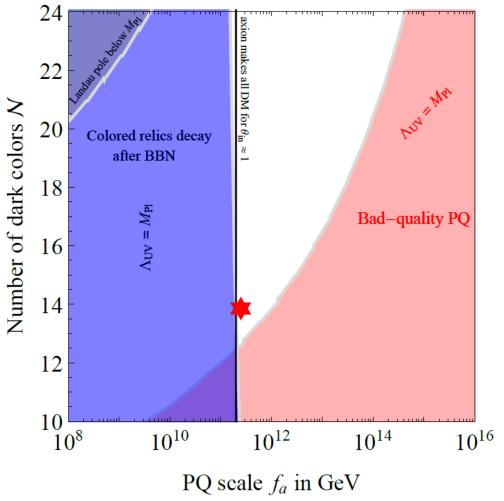


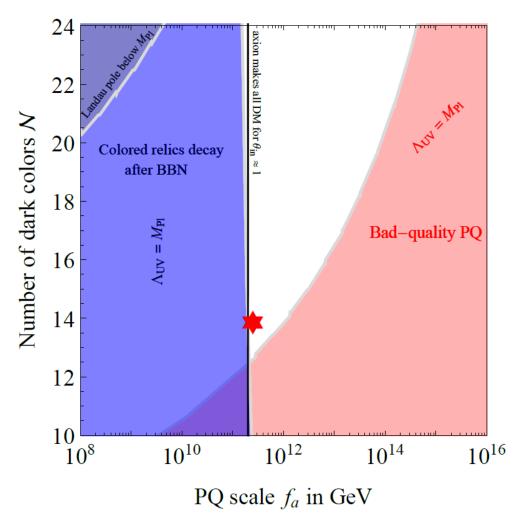
- Solution to the quality problem
- Colored relics decay before BBN

$$f_a > \frac{1}{y_Q} \sqrt{\frac{10}{N}} \left(\frac{\Lambda_{\rm UV}}{M_{\rm Pl}}\right)^{4/5} \times 10^{11} \text{ GeV}$$

The bound only apply if PQ is broken after inflation

If PQ is broken before the colored relics are diluted by inflation! $m_Q \sim f_a$

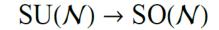




 $SU(\mathcal{N}) \rightarrow SO(\mathcal{N})$

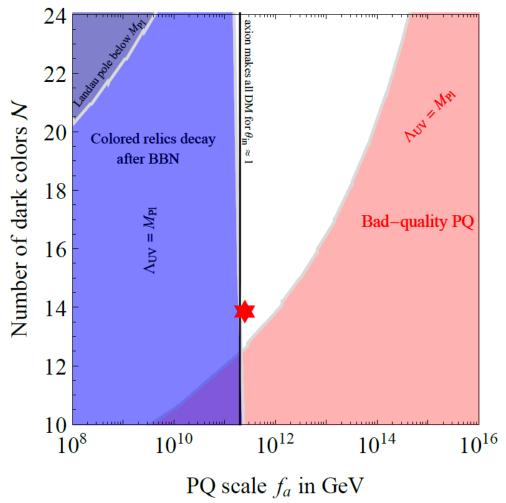
- Solution to the quality problem
- Colored relics decay before BBN
- No Landau Poles below the cut-off scale

Fast decays of colored relics allow to enlarge the parameter space to the post-inflationary scenario



- Solution to the quality problem
- Colored relics decay before BBN
- No Landau Poles below the cut-off scale

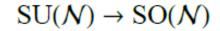
$$\frac{dg_3^2}{d\ln\mu^2} = \frac{g_3^4}{(4\pi)^2} \left(-7 + \frac{2}{3}N\right)$$
$$\frac{dg_1^2}{d\ln\mu^2} = \frac{g_1^4}{(4\pi)^2} \left(\frac{41}{10} + \frac{12N}{5}(Y_{\mathcal{L}}^2 + Y_{\mathcal{Q}}^2)\right)$$
$$\mu > m_{\mathcal{Q}}, m_{\mathcal{L}}$$



24

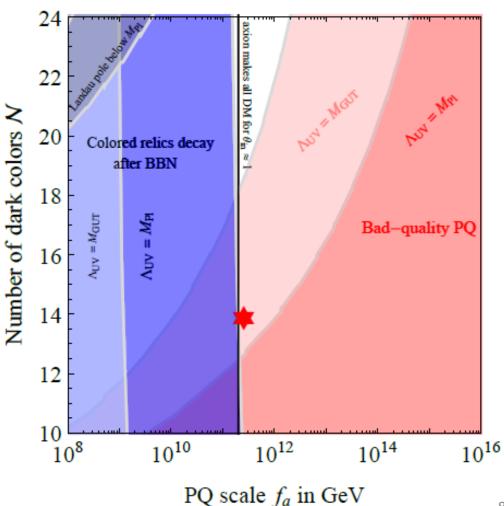
- Solution to the quality problem
- Colored relics decay before BBN
- No Landau Poles below the cut-off scale
- 22 all DM for θ_{ir} May Ma Number of dark colors N20 Colored relics decay after BBN 18 $\Lambda_{\rm UV} = M_{\rm Pl}$ **Bad-quality PQ** 16 14 12 10 10^{12} 10^{10} 10^{14} 10^{8} 10^{16} PQ scale f_a in GeV

• We need N > 12 if $\Lambda_{\rm UV} = M_{\rm Pl}$



- Solution to the quality problem
- Colored relics decay before BBN
- No Landau Poles below the cut-off scale

- We need N > 12 if $\Lambda_{\rm UV} = M_{\rm Pl}$
- Larger values of N if the cut-off is lower



Group parity

Renormalizable SU(N) / SO(N) theories are invariant under a discrete symmetry

$$\mathcal{S}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{S}_{ij} \qquad \mathcal{A}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{A}_{ij} \qquad \mathcal{Q}_i \to (-1)^{\delta_{1i}} \mathcal{Q}_i$$

indices in group space

Reflection in group space along an arbitrary direction

Ex:
$$\begin{cases} \mathcal{Q}_1 \to -\mathcal{Q}_1 \\ \mathcal{Q}_j \to \mathcal{Q}_j \end{cases} \quad \begin{cases} \mathcal{A}_{11} \to \mathcal{A}_{11} \\ \mathcal{A}_{1j} \to -\mathcal{A}_{1j} \\ \mathcal{A}_{ij} \to \mathcal{A}_{ij} \end{cases}$$

Similar to parity but in group space (instead of space-time)

Group parity

Renormalizable SU(N) / SO(N) theories are invariant under a discrete symmetry

$$\mathcal{S}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{S}_{ij} \qquad \mathcal{A}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{A}_{ij} \qquad \mathcal{Q}_i \to (-1)^{\delta_{1i}} \mathcal{Q}_i$$

Reflection in group space along an arbitrary direction

The symmetry is broken by operators of dimension (at least) N

High protection for large N (similar to PQ)

Group parity

Renormalizable SU(N) / SO(N) theories are invariant under a discrete symmetry

$$\mathcal{S}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{S}_{ij} \qquad \mathcal{A}_{ij} \to (-1)^{\delta_{1i} + \delta_{1j}} \mathcal{A}_{ij} \qquad \mathcal{Q}_i \to (-1)^{\delta_{1i}} \mathcal{Q}_i$$

Reflection in group space along an arbitrary direction

We can build SO(N) singlets which are odd under group-parity

Ex:
$$\epsilon_{\mathcal{N}} \mathcal{A}^{\mathcal{N}/2} = \epsilon_{i_1 \cdots i_{\mathcal{N}}} \overline{\mathcal{A}}_{i_1 i_2} \cdots \overline{\mathcal{A}}_{i_{\mathcal{N}-1} i_{\mathcal{N}}}$$

It acts as a Z_2 symmetry : $\epsilon_N \mathcal{A}^{N/2} \rightarrow - \epsilon_N \mathcal{A}^{N/2}$

Stable states

The lightest bound states odd under group-parity are stable

if N is odd
$$\epsilon_N \mathcal{A}^{(N-1)/2} \mathcal{L}$$
if N is even $\epsilon_N \mathcal{A}^{N/2}$

The typical mass is $M_{BS} \sim \Lambda_{SO}$

Production of composite DM

$$M_{\rm BS} \approx \Lambda_{\rm SO} \approx 10^8 \,{\rm GeV}$$
 $\frac{\Omega_{\rm DM} h^2}{0.12} \approx \left(\frac{M_{\rm BS}}{100 \,{\rm TeV}}\right)^2$ if thermally produced

The model provides 2 efficient suppression mechanisms!

Confinement after reheating

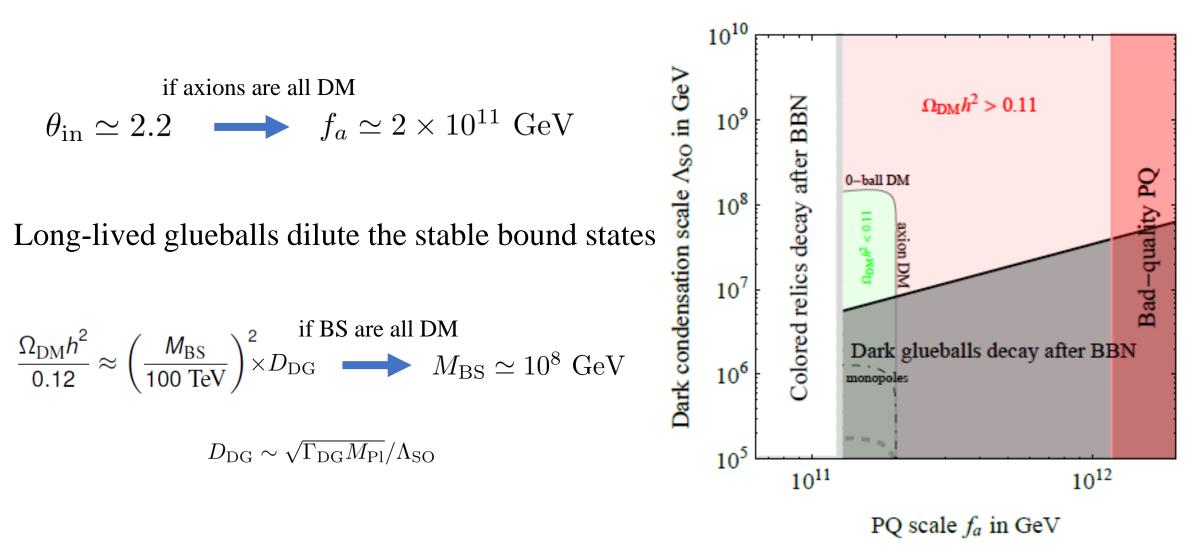
- BS are in thermal equilibrium
- Period of early matter domination (SO(N) glueballs)
- Late glueballs decay entropy injection

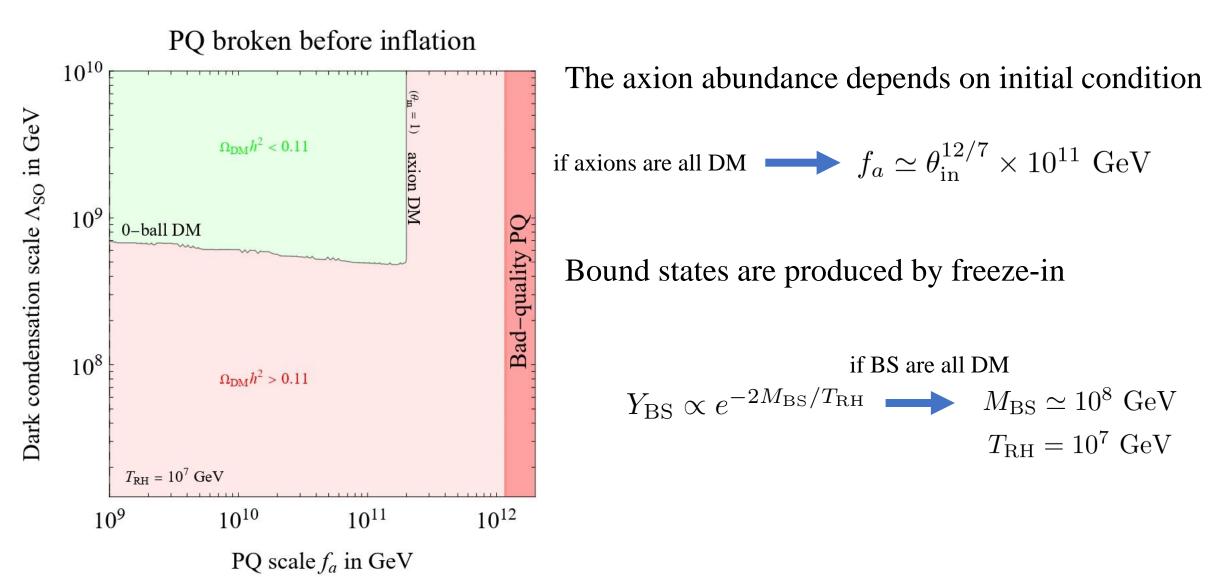
→ huge dilution of BS abundance

Confinement before reheating

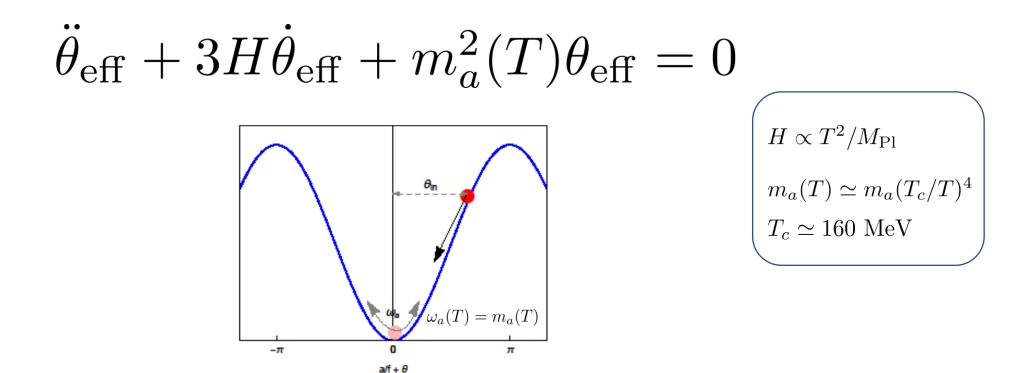
Freeze-in production of BS is exponentially suppressed as $\rho - M_{\rm BS}/T_{\rm RH}$

PQ broken after inflation

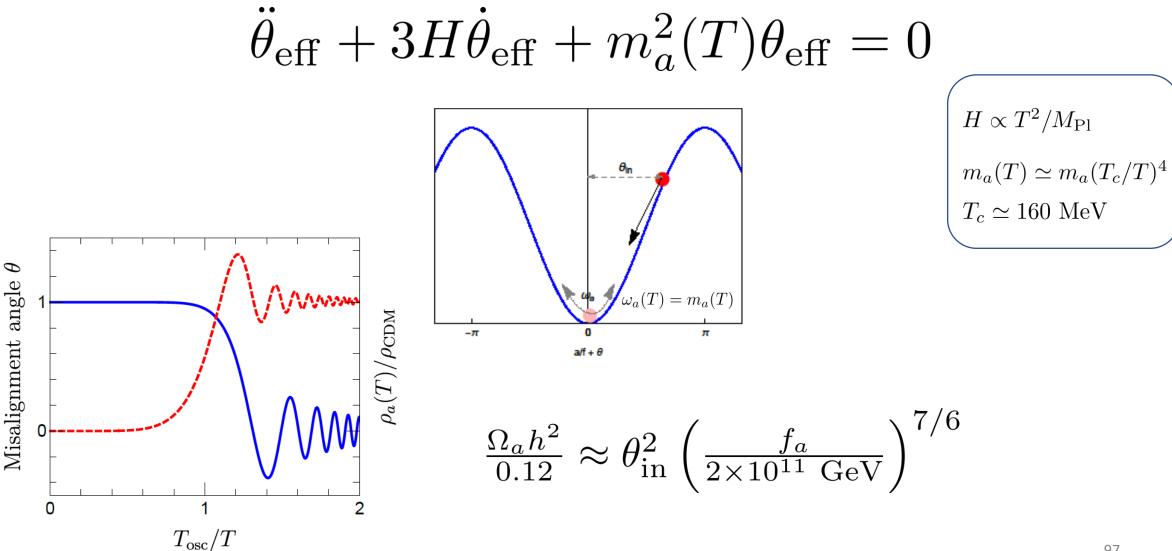




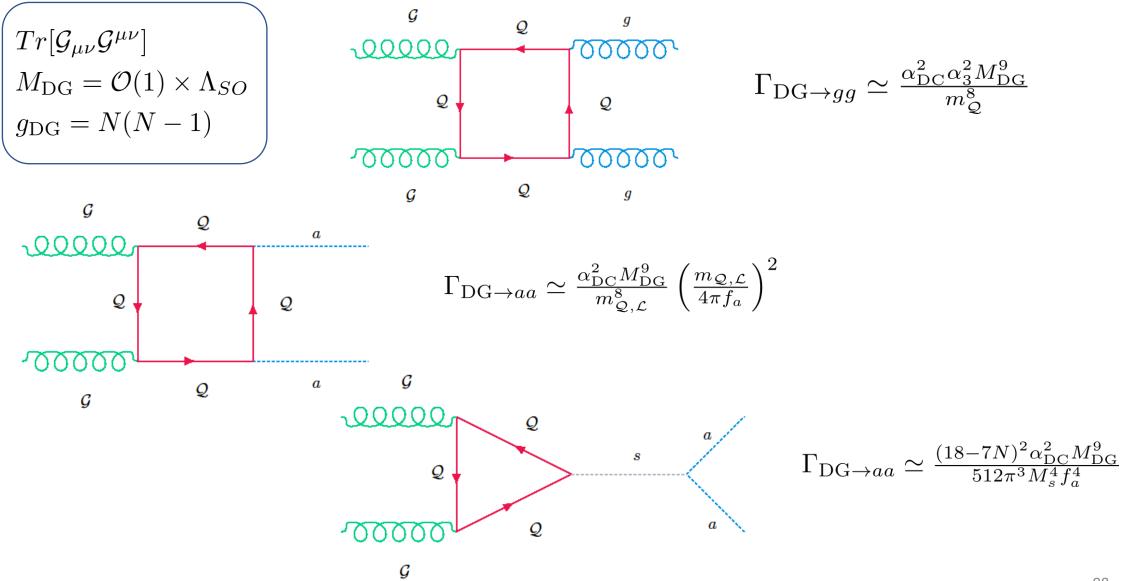
Axion production



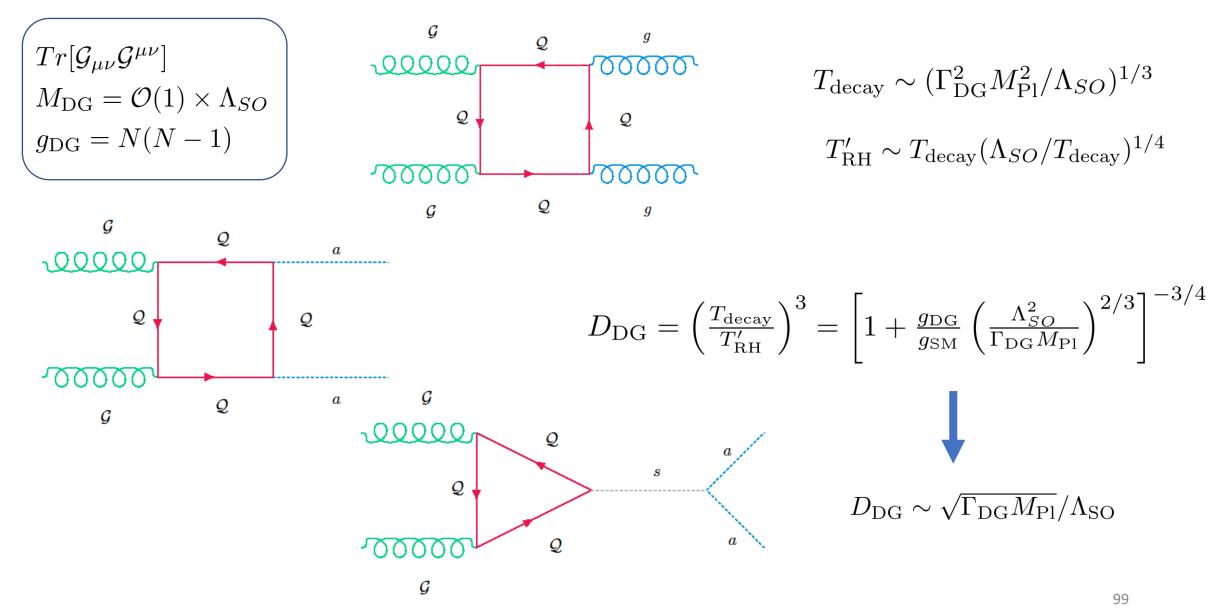
Axion production



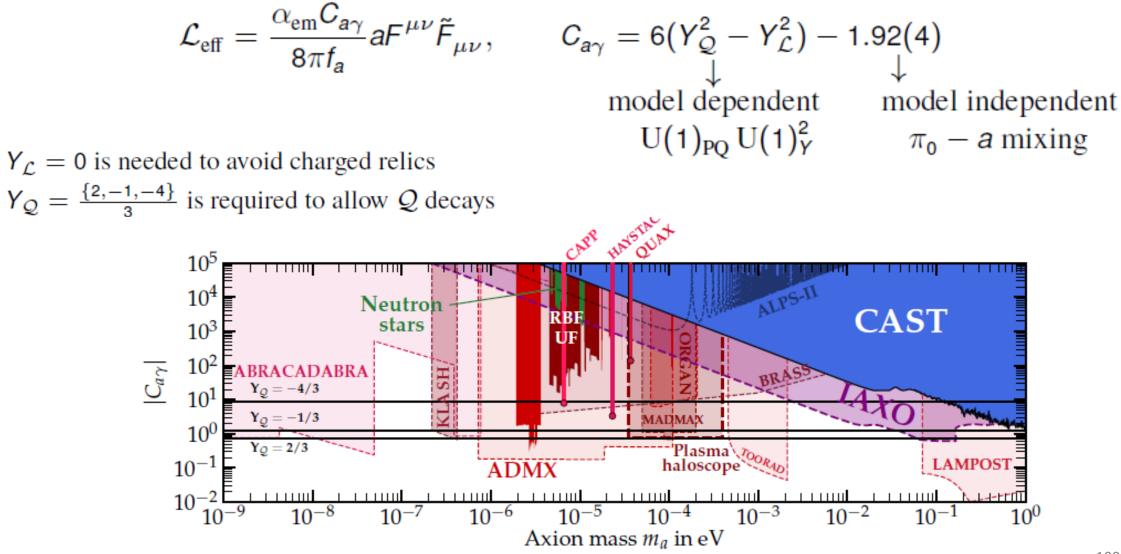
SO(N) Glue-balls



SO(N) Glue-balls

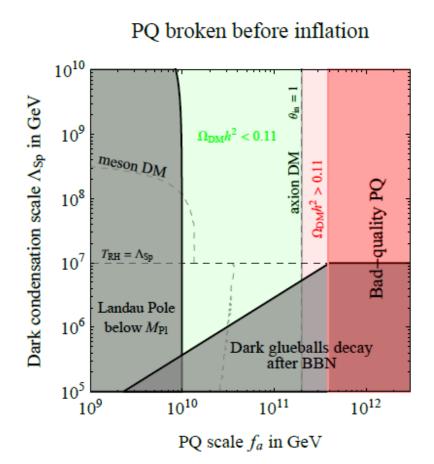


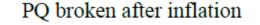
Axion photon coupling

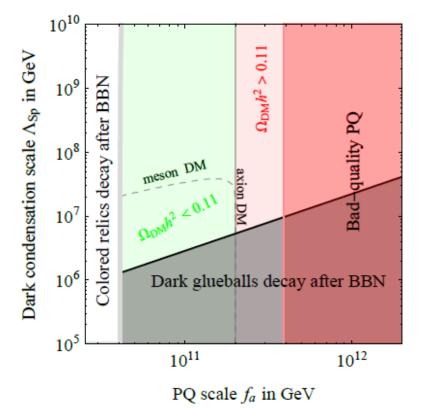


Scalar in antisymmetric of SU(N)

Same idea but SU(N) is broken to Sp(N) PQ is broken by dimension N/2 operator $\epsilon_N S^{N/2}$ DM: axions (+ mesons $\mathcal{L}\gamma_N \mathcal{L}$)







101

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_{yuk} - V(\mathcal{S})$$

$$\mathcal{L}_{yuk} = y_{\mathcal{Q}} \mathcal{Q}_L \mathcal{S}^{\dagger} \mathcal{Q}_R + y_{\mathcal{L}}^{ij} \mathcal{L}_L^i \mathcal{S} \mathcal{L}_R^j + h.c.$$

$$U(1)_{\mathcal{Q}} \qquad \text{if } Y_{\mathcal{L}} \neq 0 \qquad U(1)_{\mathcal{L}}$$

$$\mathcal{Q}_{L(R)} \rightarrow e^{(-)i\alpha} \mathcal{Q}_{L(R)} \qquad \qquad \mathcal{L}_{L(R)} \rightarrow e^{(-)i\beta} \mathcal{L}_{L(R)}$$

 $V(S) = M_{\mathcal{S}}^2 Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right] + \lambda_{\mathcal{S}} Tr \left[(\mathcal{S}^{\dagger} \mathcal{S})^2 \right] + \lambda_{\mathcal{S}}' Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \mathcal{S}^{\dagger} \mathcal{S} \right] - \lambda_{H\mathcal{S}} (H^{\dagger} H) Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right]$

Lagrangian and symmetries

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm yuk} - V(\mathcal{S})$$

$$\mathcal{L}_{\text{yuk}} = y_{\mathcal{Q}} \mathcal{Q}_L \mathcal{S}^{\dagger} \mathcal{Q}_R + y_{\mathcal{L}}^{ij} \mathcal{L}_L^i \mathcal{S} \mathcal{L}_R^j + h.c.$$

 $U(1)_{\mathcal{Q}}$

$$if Y_{\mathcal{L}} = 0 \qquad \qquad Z_2$$

No distinction between L and R

 $\mathcal{Q}_{L(R)} \to e^{(-)i\alpha} \mathcal{Q}_{L(R)}$

 $\mathcal{L}
ightarrow -\mathcal{L}$

 $V(S) = M_{\mathcal{S}}^2 Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right] + \lambda_{\mathcal{S}} Tr \left[(\mathcal{S}^{\dagger} \mathcal{S})^2 \right] + \lambda_{\mathcal{S}}' Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \mathcal{S}^{\dagger} \mathcal{S} \right] - \lambda_{H\mathcal{S}} (H^{\dagger} H) Tr \left[\mathcal{S}^{\dagger} \mathcal{S} \right]$

Spectrum

$$\mathcal{S} = \left[\left(w + \frac{s}{\sqrt{2N}} \right) \operatorname{diag}(1, \dots, 1) + (\tilde{s}^b + i\tilde{a}^b) T_{\mathrm{real}}^b \right] e^{\frac{ia}{\sqrt{2N}w}}$$

• $\mathcal{N}(\mathcal{N}-1)/2$ massless vectors \mathcal{A}^a in the adjoint of SO(\mathcal{N}).

- $\mathcal{N}(\mathcal{N}+1)/2 1$ vectors \mathcal{W}^b in the traceless symmetric of SO(\mathcal{N}), that acquire a squared mass $M^2_{\mathcal{W}} = 4\mathfrak{g}^2 w^2$ eating the Goldstone bosons \tilde{a}^b .
- The massless scalar *a*, singlet under SO(\mathcal{N}). In view of its QCD anomalies it can be called axion and its decay constant will be $f_a = w/\sqrt{\mathcal{N}/2}$.
- the scalar s, singlet under SO(\mathcal{N}). If symmetry breaking arises through the Coleman-Weinberg mechanism it is light with squared mass $M_s^2 = 6(\mathcal{N}\lambda_S + \lambda'_S)w^2$.
- $\mathcal{N}(\mathcal{N}+1)/2 1$ scalars \tilde{s}^b with squared mass $M_{\tilde{s}}^2 = 2(N\lambda_S + 3\lambda'_S)w^2$.
- One colored Dirac quark $\Psi_Q = (Q_L, \bar{Q}_R)^T$ with mass $M_Q = y_Q w$ in the fundamental representation of SO(\mathcal{N}) charged under the accidental global U(1)_Q.
- Three Dirac leptons $\Psi_{\mathcal{L}}^i = (\mathcal{L}_L^i, \bar{\mathcal{L}}_R^i)^T$ with masses $M_{\mathcal{L}^i} = y_{\mathcal{L}}^i w$ in the fundamental of $\mathrm{SO}(\mathcal{N})$ charged under the accidental global $\mathrm{U}(1)_{\mathcal{L}_i}$ if $Y_{\mathcal{L}} \neq 0$. If $Y_{\mathcal{L}} = 0$ one instead gets six Majorana leptons $\Psi_{\mathcal{L}}^i = (\mathcal{L}^i, \bar{\mathcal{L}}^i)^T$ with masses $M_{\mathcal{L}^i} = y_{\mathcal{L}}^i w$ in the fundamental of $\mathrm{SO}(\mathcal{N})$ which transform as $\Psi_{\mathcal{L}}^i \to -\Psi_{\mathcal{L}}^i$ under the accidental \mathbb{Z}_2 symmetry.

Spectrum

$$\Lambda_{\rm SO} \approx f_a \exp\left[-\frac{6\pi}{11(\mathcal{N}-2)\alpha_{\rm DC}(f_a)}\right]$$

• If \mathcal{N} is even the lightest baryon is the 0-ball $\epsilon_{\mathcal{N}} \mathcal{A}^{N/2}$ made of SO gluons only, stable thanks to U-parity (see e.g. [18]). On the other hand, the lighter baryons containing fermions

$$\epsilon_{\mathcal{N}}\mathcal{A}^{(\mathcal{N}-2)/2}\mathcal{Q}\mathcal{Q}, \quad \epsilon_{\mathcal{N}}\mathcal{A}^{(\mathcal{N}-2)/2}\mathcal{L}\mathcal{L}, \quad \epsilon_{\mathcal{N}}\mathcal{A}^{(\mathcal{N}-2)/2}\mathcal{Q}\mathcal{L}$$
 (35)

can decay respecting U-parity into the 0-ball plus the corresponding lighter mesons QQ, \mathcal{LL} , $Q\mathcal{L}$. Such mesons are stable in the limit of exact $U(1)_{Q,\mathcal{L}}$ symmetries.

• If \mathcal{N} is odd the lightest baryons contain one fermion (and thereby dubbed 1-ball)

$$\epsilon_{\mathcal{N}} \mathcal{A}^{(\mathcal{N}-1)/2} \mathcal{Q}, \quad \epsilon_{\mathcal{N}} \mathcal{A}^{(\mathcal{N}-1)/2} \mathcal{L}$$
 (36)

are stable if the fermion \mathcal{Q} and/or \mathcal{L} is stable.

Stable states

Protected by U-parity or/and global U(1)

if
$$Y_{\mathcal{L}} \neq 0$$
if $Y_{\mathcal{L}} = 0$ if N is odd $\epsilon_N \mathcal{A}^{(N-1)/2} \mathcal{L}$ and \mathcal{LL} $\epsilon_N \mathcal{A}^{(N-1)/2} \mathcal{L}$ if N is even $\epsilon_N \mathcal{A}^{N/2}$ and \mathcal{LL} $\epsilon_N \mathcal{A}^{N/2}$

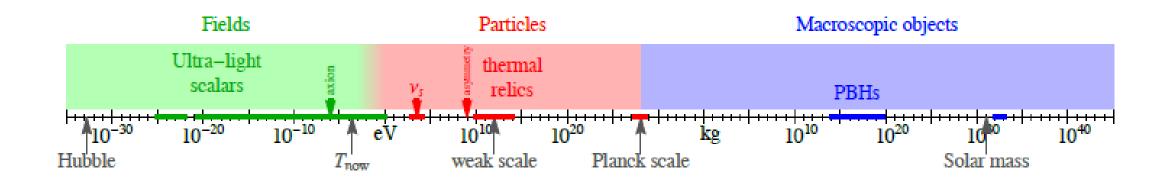
To avoid charged relics we only consider

$$Y_{\mathcal{L}} = 0$$

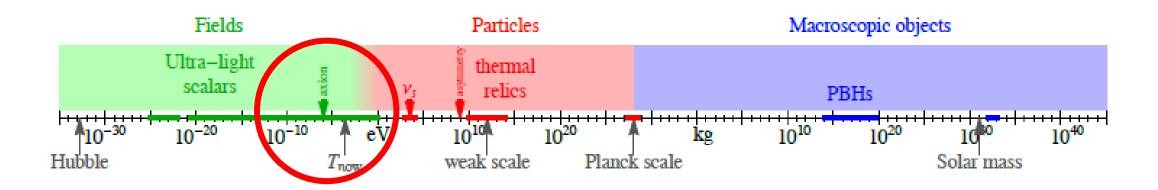
With this choice the global U(1) is replaced by

 $Z_2: \mathcal{L} \to -\mathcal{L}$

The mass range of DM candidates spans over 80 order of magnitudes



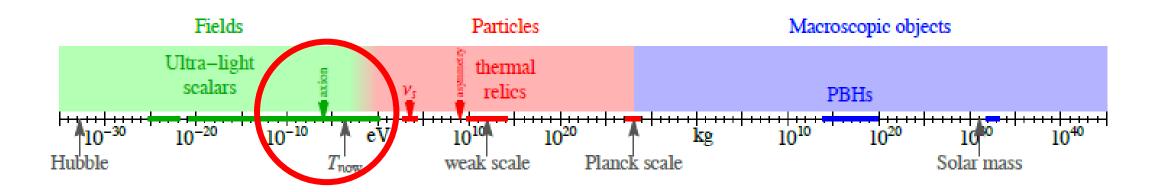
The mass range of DM candidates spans over 80 order of magnitudes



Axions are excellent ultra-light DM candidates

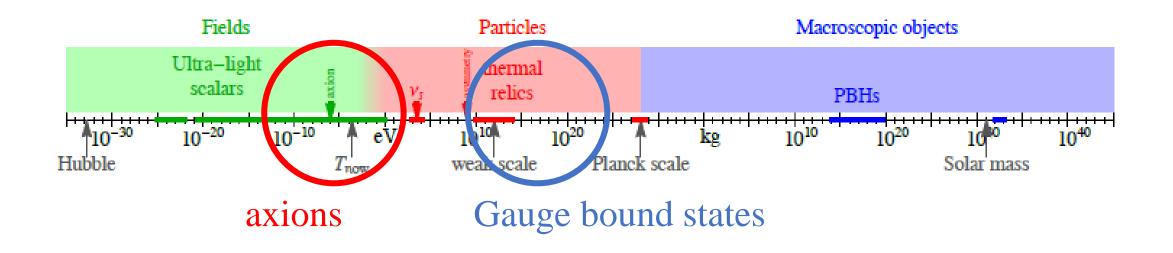
→ production: vacuum misalignment mechanism $f_a \simeq 10^{11} \text{ GeV}$

The mass range of DM candidates spans over 80 order of magnitudes



Axions are excellent ultra-light DM candidates

 \longrightarrow production: vacuum misalignment mechanism $f_a \simeq 10^{11} \text{ GeV}$ Axion are DM...but there are other stable states which contribute!



Dark Matter is either dominated by one state (**single-component**) or a mixture of the two (**multi-component**)