

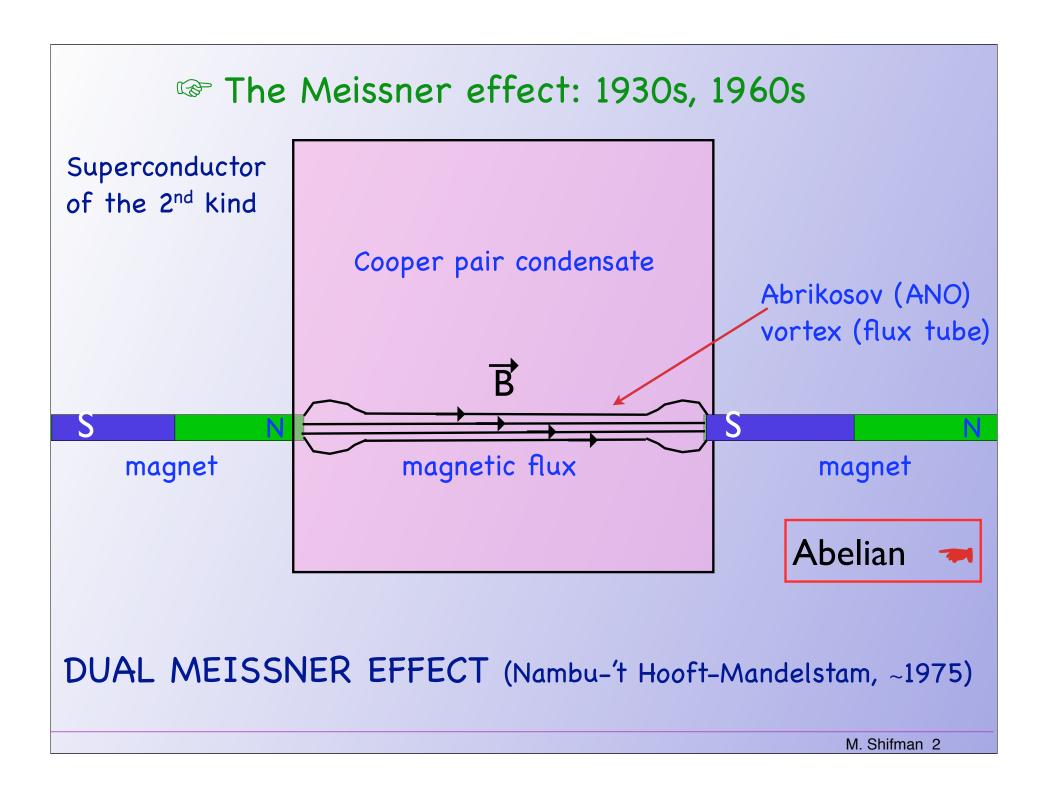
Dipartimento di Fisica, Universita' degli Studi "Sapienza"

M. Shifman
W.I. Fine Theoretical Physics Institute, University of
Minnesota

Non-Abelian strings in supersymmetric Yang-Mills: 4D-2D correspondence

A. Yung,
A. Gorsky, P. Bolokhov,
W. Vinci, P. Koroteev

October 19, 2011



First demonstration of the dual Meissner effect: Seiberg & Witten, 1994

- gluons+complex scalar superpartner
- two gluinos
- Georgi-Glashow model built in

N=2 (extended) SUSY
$$\rightarrow$$
 SU(2) \rightarrow U(1), monopoles \rightarrow

Monopoles become light \rightarrow N=1 deform. forces M condensatition \rightarrow

U(1) broken, electric flux tube formed -

Dynamical Abelization ... dual Abrikosov string

analytic continuation

Non-Abelian Strings, 2003 → Now

Prototype model

$$S = \int d^4x \left\{ \frac{1}{4g_2^2} \left(F_{\mu\nu}^a \right)^2 + \frac{1}{4g_1^2} \left(F_{\mu\nu} \right)^2 + \frac{1}{g_2^2} |D_{\mu}a^a|^2 \right\}$$

+
$$\operatorname{Tr}\left(\nabla_{\mu}\Phi\right)^{\dagger}\left(\nabla^{\mu}\Phi\right) + \frac{g_{2}^{2}}{2}\left[\operatorname{Tr}\left(\Phi^{\dagger}T^{a}\Phi\right)\right]^{2} + \frac{g_{1}^{2}}{8}\left[\operatorname{Tr}\left(\Phi^{\dagger}\Phi\right) - N\xi\right]^{2}$$

+
$$\left| \frac{1}{2} \text{Tr} \left| a^a T^a \Phi + \Phi \sqrt{2} M \right|^2 + \frac{i \theta}{32 \pi^2} F^a_{\mu\nu} \tilde{F}^{a \mu\nu} \right\}, \qquad \Phi = \begin{pmatrix} \Phi^{11} \Phi^{12} \\ \Phi^{21} \Phi^{22} \end{pmatrix}$$

$$\Phi = \begin{pmatrix} \varphi^{11} \varphi^{12} \\ \varphi^{21} \varphi^{22} \end{pmatrix}$$

U(2) gauge group, 2 flavors of (scalar) quarks SU(2) Gluons A^{α}_{μ} + U(1) photon + gluinos+ photino

$$M = \begin{pmatrix} m & 0 \\ 0 - m \end{pmatrix}$$

$\Phi = \sqrt{\xi} \times I$

Basic idea:

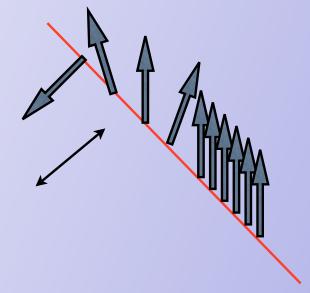
- Color-flavor locking in the bulk → Global symmetry G;
- G is broken down to H on the given string;
- G/H coset; G/H sigma model on the world sheet.

"Non-Abelian" string is formed if all non-Abelian degrees of freedom participate in dynamics at the scale of string formation

2003: Hanany, Tong

Auzzi et al.

Yung + M.S.



classically gapless excitation

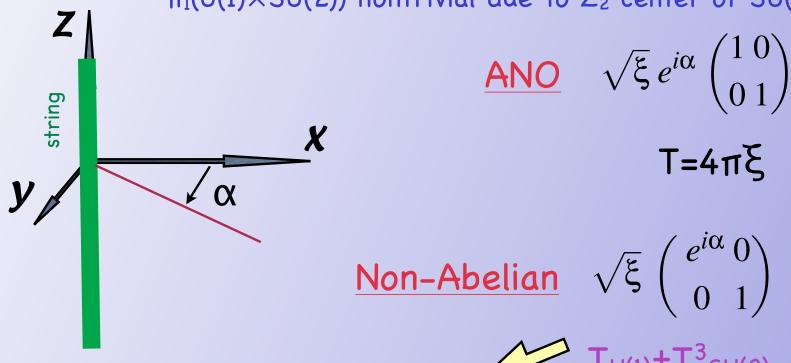
 $SU(2)/U(1) = CP(1)\sim O(3)$ sigma model

- * ANO strings are there because of U(1)!
- * New strings:

 $\pi_1(SU(2)\times U(1)) = Z_2$: rotate by π around 3-d axis in SU(2)

 \rightarrow -1; another -1 rotate by π in U(1)

 $\pi_1(U(1)\times SU(2))$ nontrivial due to Z_2 center of SU(2)



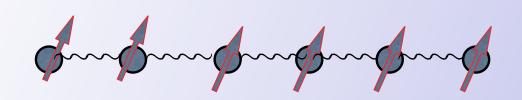
X0 ← string center in perp. plane

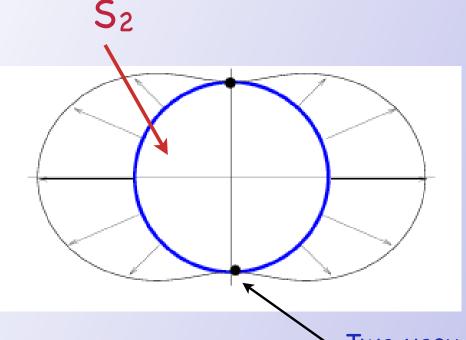
$$T_{U(1)}\pm T^3_{SU(2)}$$

T=2πξ

 $SU(2)/U(1) \leftarrow orientational moduli; O(3) \sigma model$

M. Shifman 7

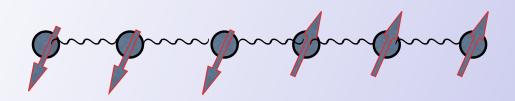


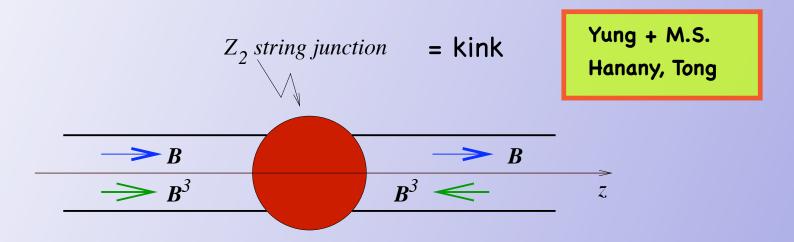


Global SU(2) is gone! U(1) remains intact

Two vacua= 2 degenerate strings

CP(1) model with twisted mass
$$S = \int d^2x \left\{ \frac{2}{g^2} \frac{\partial_\mu \bar{\phi} \, \partial^\mu \phi - (\Delta m)^2 \bar{\phi} \phi}{(1 + \bar{\phi} \phi)^2} + fermions \right\}$$





Evolution in dimensionless parameter m^2/ξ

- * Kinks are confined in 4D (attached to strings).
- * * Kinks are confined in 2D:

Kink = Confined Monopole

4D ↔ 2D Correspondence

World-sheet theory ↔ strongly coupled bulk theory inside

Dewar flask

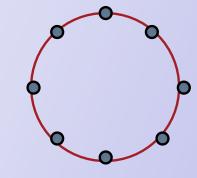
Versions of CP(N-1) models in 2D: non-SUSY, and SUSY ** * $\mathcal{N} = (0,2)$ and (2.2)

★ Gauged formulation ★ (Witten, 1979)

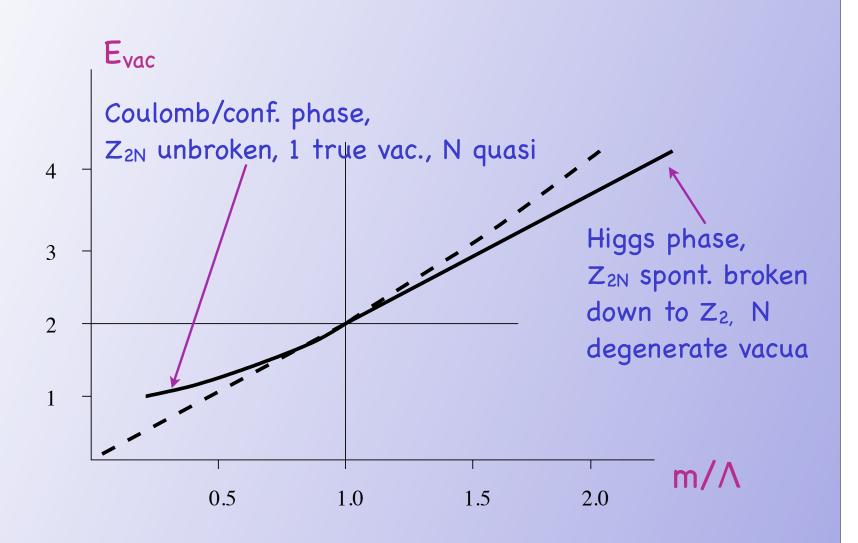
I. Non-SUSY bulk

$$S^{(1+1)} = \int dt \, dz \, \left\{ 2\beta \, |\nabla_{\alpha} n|^2 + \frac{1}{4e^2} F_{\alpha\gamma}^2 + \frac{1}{e^2} |\partial_{\alpha} \sigma|^2 + 4\beta \left| \left(\sigma - \frac{m_{\ell}}{\sqrt{2}}\right) n^{\ell} \right|^2 + 2e^2\beta^2 \left(|n^{\ell}|^2 - 1\right)^2 \right\}$$

$$\nabla_{\alpha} = \partial_{\alpha} - iA_{\alpha}$$



ho m~ $e^{2\pi i/N}$, $e^{4\pi i/N}$, ..., $e^{2(N-1)\pi i/N}$, 1

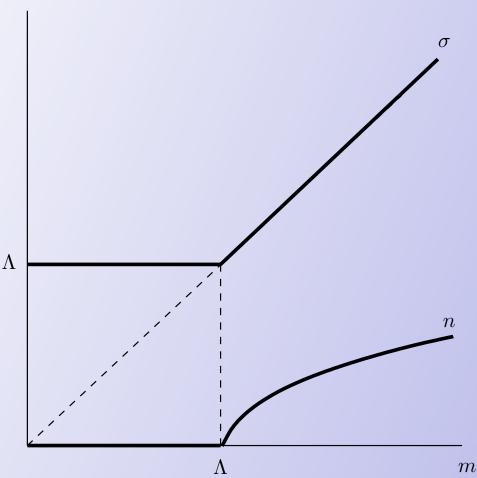


N = (2,2) CP(N-1) model

$$\mathcal{L} = \frac{1}{e_0^2} \left(\frac{1}{4} F_{\mu\nu}^2 + |\partial_{\mu} \sigma|^2 + \frac{1}{2} D^2 \right) + i D \left(\bar{n}_i n^i - 2\beta \right)$$

$$+ \left| \nabla_{\mu} n^i \right|^2 + 2 \sum_i \left| \sigma - \frac{m_i}{\sqrt{2}} \right|^2 |n^i|^2$$

+ fermions



 E_{vac} =0 always, SUSY unbroken, Z_{2N} always broken, (N degenerate vacua)

Crossover instead of phase transition Strong-coupling ↔ Higgs regime

$$N = (0,2) CP(N-1) model$$

Supersymmetry is broken, generally speaking !!! Phase transitions possible

All phase transitions are of the second kind!

Break N = 2 down to N = 1 in the bulk

Tong
Yung + M.S.

Deformation of the bulk: ADD W= $\mu(A^a)^2 + \mu'A^2$

Heterotic deformation the of the World-sheet theory:

(2,2) supersymmetry is broken down to (0,2)

$$L_{heterotic} = \zeta_R^{\dagger} i \partial_L \zeta_R + \left[\gamma \zeta_R R \left(i \partial_L \phi^{\dagger} \right) \psi_R + H.c. \right] - g_0^2 |\gamma|^2 \left(\zeta_R^{\dagger} \zeta_R \right) \left(R \psi_L^{\dagger} \psi_L \right)$$

at small γ ζ_R is Goldstino

$$\mathcal{E}_{vac} = |\mathbf{\gamma}|^2 \left| \langle R \mathbf{\psi}_R^{\dagger} \mathbf{\psi}_L \rangle \right|^2$$

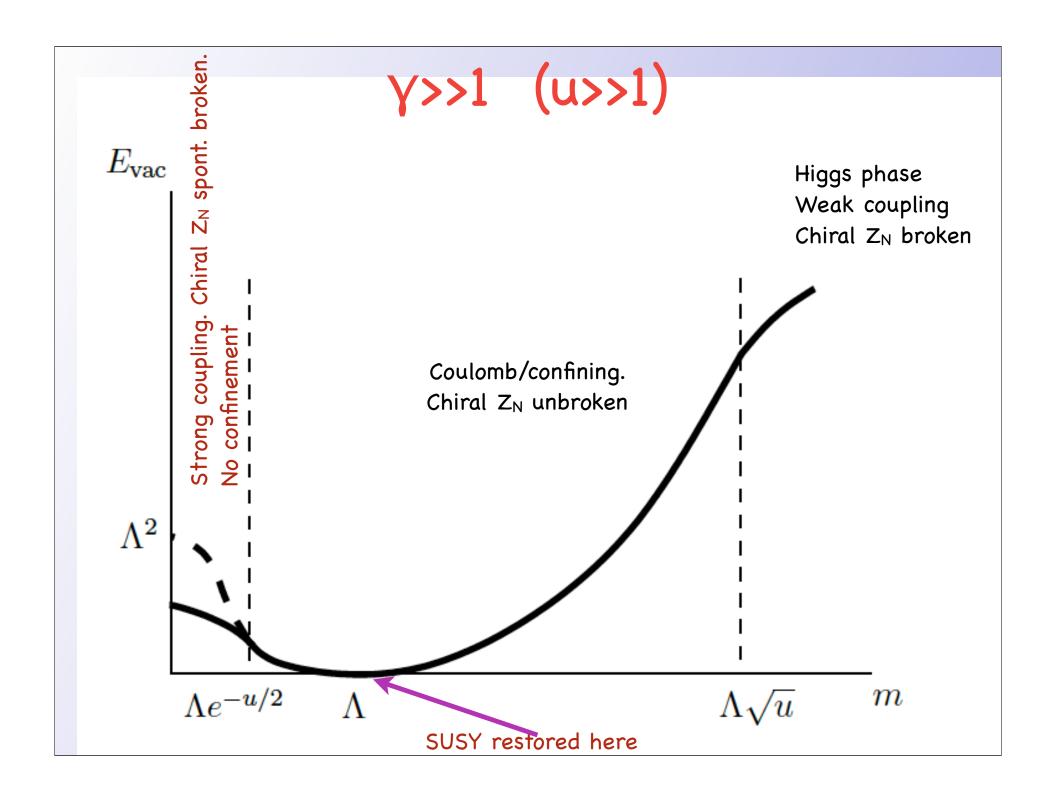
(0,2) supersymmetry is spontaneously broken!

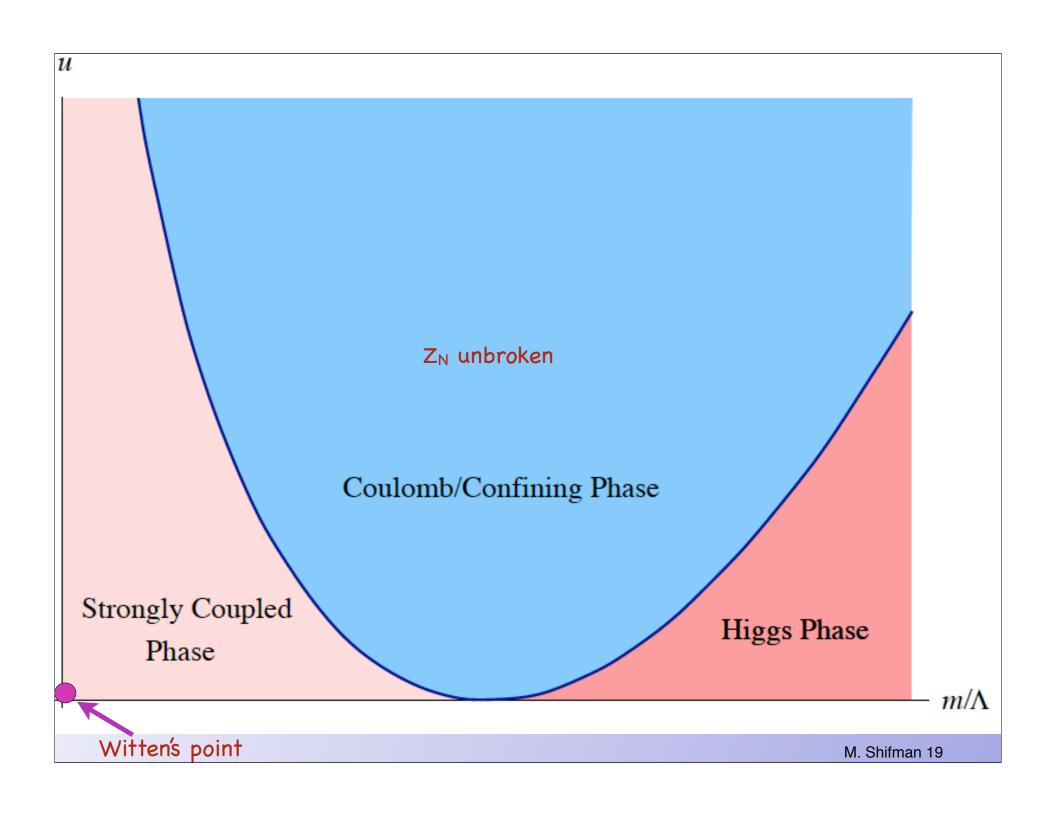
At large N heterotic CP(N-1) is also solvable (a là Witten) and presents a treasure trove of various phases

We have two parameters, γ and m, and a nontrivial phase diagram

With this choice of mass parameters we have Z_N symmetry, and phases with broken/unbroken Z_N .

SUSY is spontaneously broken





IV. $\mathcal{N} = 1$ or 2 SUSY bulk, Hanani - Tong model vs. zn model

- @ Semilocal Strings
- * Obtained from string/D brane consideration
- * From field theory we get zn model: DIFFERNENT
- * * Large-N limit the same!!!

$$\mathcal{L}_{\mathbb{WCP}^{N_F-1}}^{het} = |\nabla_{\mu} n_i|^2 + |\tilde{\nabla}_{\mu} \rho_j|^2$$

$$-\sum_{i=0}^{N-1} |\sigma - m_i|^2 |n_i|^2 - \sum_{j=0}^{\tilde{N}-1} |\sigma - \mu_j|^2 |\rho_j|^2 - D(|n_i|^2 - |\rho_j|^2 - r_0)$$

$$-2|\omega|^2|\sigma|^2$$

$$\nabla_{\mu} n_i = (\partial_{\mu} - iA_{\mu}) n_i, \quad \tilde{\nabla}_{\mu} \rho_j = (\partial_{\mu} + iA_{\mu}) \rho_j$$

$$N_F = N + \widetilde{N}$$

$$m_k = m e^{2\pi i \frac{k}{N}}, \quad k = 0, \dots, N - 1$$

 $\mu_l = \mu e^{2\pi i \frac{l}{\tilde{N}}}, \quad l = 0, \dots, \tilde{N} - 1.$

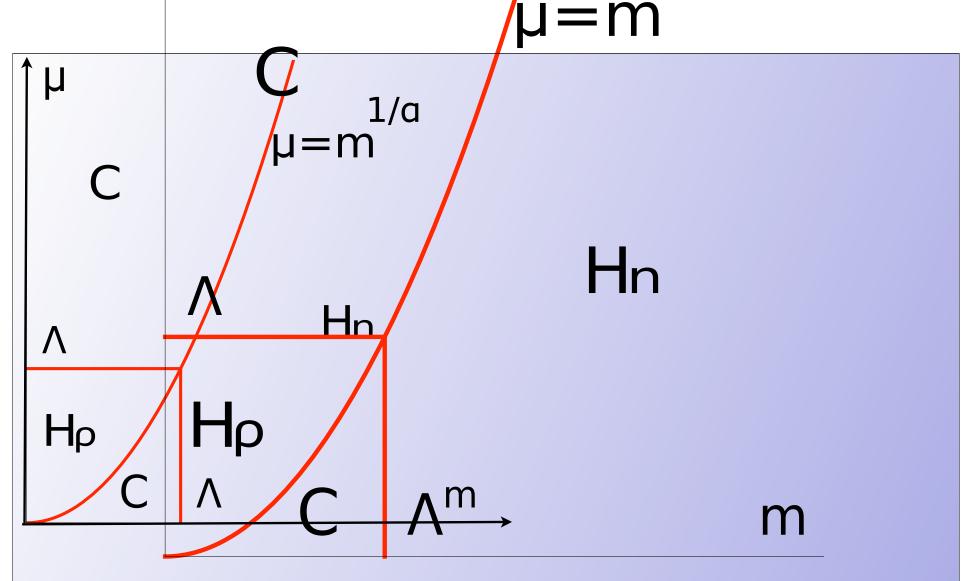


Figure 4: Phase Diagram of the weighted (2,2) \mathbb{CP}^{N-1} model in the large-N approach. There are four domains with different VEVs for σ : two Higgs branches $\mathbf{H}\rho$ and $\mathbf{H}n$, and two Coulomb branches \mathbf{C} . In the Coulomb phase \mathbf{C} r=0. The curve $\mu/\Lambda=(m/\Lambda)^{1/\alpha}$ together with horizontal and vertical lines starting from $\mu=\Lambda$ and $m=\Lambda$ respectively separates the \mathbf{C} phases from the Higgs phases. In $\mathbf{H}n$ r>0 and in $\mathbf{H}\rho$ r<0. On the super-conformal line $\mu/\Lambda=(m/\Lambda)^{1/\alpha}$ a new branch described by a super-conformal theory opens up.

M. Shifman 21

V. $\mathcal{N} = 2$ SUSY bulk,

zn Model (MS+Vinci+Yung)

$$S_{\text{exact}} = \int d^2x \left\{ |\partial_k(z_j n_i)|^2 + |\nabla_k n_i|^2 + \frac{1}{4e^2} F_{kl}^2 + \frac{1}{e^2} |\partial_k \sigma|^2 + |m_i - \tilde{m}_j|^2 |z_j|^2 |n_i|^2 + \left| \sqrt{2}\sigma + m_i \right|^2 |n_i|^2 + \frac{e^2}{2} \left(|n_i|^2 - r \right)^2 \right\},$$

$$i = 1, ..., N, \qquad j = 1, ..., \tilde{N}, \qquad \nabla_k = \partial_k - iA_k.$$

zj of the opposite charge compared to ni and unconstrained

Derived from the bulk theory in the limit $ln(\xi L^2) >> 1$

P. Koroteev , W. Vinci, A. Yung+ MS: work in progress:

BPS sectors the same at any N

New type of renormalizability

Instead of conclusions

4D ↔ 2D Correspondence
brings fruits and a treasure
trove of novel 2D models with
intriguing dynamics!

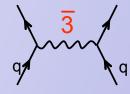
Confined monopoles in dense QCD

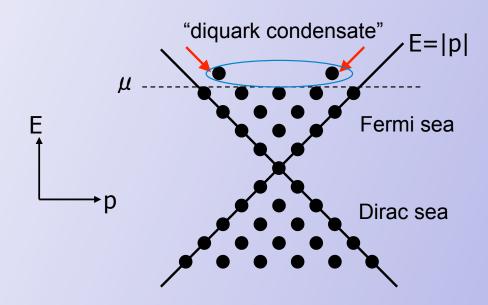
Color Superconductivity (CSC)

- ➤ QCD at high density → Fermi surface, weak-coupling
- ➤ Attractive channel → Cooper instability

$$[3]_{\text{C}} \times [3]_{\text{C}} = [6]_{\text{S}} + [\overline{3}]_{\text{A}}$$

$$(\tau_a)_{ij}(\tau_a)_{kl} = \frac{2}{3}(\tau_S)_{ik}(\tau_S)_{lj} - \frac{4}{3}(\tau_A)_{ik}(\tau_A)_{lj}$$





2 Ginsburg–Landau effective description

At large μ QCD is in the CFL phase. Diquark condensate

$$\Phi^{kC} \sim \varepsilon_{ijk} \, \varepsilon_{ABC} \left(\psi_{\alpha}^{iA} \, \psi^{jB\,\alpha} \, + \bar{\tilde{\psi}}^{iA\,\dot{\alpha}} \, \bar{\tilde{\psi}}_{\dot{\alpha}}^{jB} \right)$$

At $T \to T_c$ gap fluctuations become important.

Chiral fluctuations (π -mesons) are considered less important

$$S = \int d^4x \left\{ \frac{1}{4g^2} \left(F_{\mu\nu}^a \right)^2 + 3 \operatorname{Tr} \left(\mathcal{D}_0 \Phi \right)^{\dagger} \left(\mathcal{D}_0 \Phi \right) \right.$$
$$+ \operatorname{Tr} \left(\mathcal{D}_i \Phi \right)^{\dagger} \left(\mathcal{D}_i \Phi \right) + V(\Phi) \right\}$$

with the potential

$$V(\Phi) = -m_0^2 \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) + \lambda \left(\left[\operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 + \operatorname{Tr} \left[\left(\Phi^{\dagger} \Phi \right)^2 \right] \right)$$

M. Shifman

Vacuum

$$\Phi_{\text{vac}} = v \operatorname{diag} \{1, 1, 1\}$$

where

$$v^2 = \frac{m_0^2}{8\lambda} = \frac{4\pi^2}{3} \frac{T_c - T}{T_c} \mu^2$$

The symmetry breaking pattern

$$SU(3)_C \times SU(3)_F \times U(1)_B \to SU(3)_{C+F}$$

9 symmetries are broken.

8 are eaten by Higgs mechanism.

One Goldstone boson associated with broken $U(1)_B$.