

Constraining Flavor from the semileptonic decays of baryons.

Florentin Jaffredo, INFN,

In collaboration with : D. Becirevic, S. Rosauro, O. Sumensari [2209.13409], [240x.xxxx]

Motivations

- Low-energy flavor physics is mostly probed using mesons.
- Remaining hints of LFUV in $b \rightarrow c\ell\nu$.

$$R_{D^{(*)}} = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\nu\right)}{\mathcal{B}\left(B \to D^{(*)}\mu\nu\right)}$$

• NP observables should not depend on the spectator(s).

Computing baryon observables

- Low energy observable, $m_{\Lambda_b} = 5.6 \text{ GeV}.$
- Assuming NP at a scale $\Lambda \sim O(1 \text{ TeV})$, can be computed using a weak EFT.

Charged LagrangianNeutral Lagrangian :
$$\mathcal{L}_{NP} = -\frac{4G_F V_{ij}}{\sqrt{2}} \sum_X g_X \mathcal{O}_X + h.c.$$
 $\mathcal{L}_{NP} = -\frac{4G_F V_{ti} V_{tj}^*}{\sqrt{2}} \sum_X (\delta C_X \mathcal{O}_X + \delta C'_X \mathcal{O}'_X) + h.c.$ $X \in V_L, V_R, S_R, S_L, T$ $X \in 9, 10, S, P, 9', 10', S', P', ...$

 $\mathcal{O}_X = (\bar{q}_i \Gamma q_j)(\bar{\ell}_{\alpha} \Gamma \ell_{\beta}) \quad \text{with} \quad \Gamma \in P_{L/R}, \gamma^{\mu} P_{L/R}, \sigma^{\mu\nu} P_L$

Process that can be studied :

$$egin{array}{lll} b o c:& \Lambda_b o \Lambda_c\ell
u\ && \Lambda_b o \Lambda_c^*\ell
u\ c o s:& \Lambda_c o \Lambda\ell
u\ s o \mu:& \Lambda o p\ell
u \end{array}$$

$$egin{array}{lll} b o s : & \Lambda_b o \Lambda\ell\ell' \ b o u : & \Lambda_b o n\ell\ell' \end{array}$$

Example for $b \rightarrow c$

$$\mathcal{L}_{NP} = -\frac{4G_F V_{cb}}{\sqrt{2}} \bigg[g_{V_L} (\bar{c}\gamma_\mu P_L b) (\bar{\tau}\gamma^\mu P_L \nu_\tau) + g_{V_R} (\bar{c}\gamma_\mu P_R b) (\bar{\tau}\gamma^\mu P_L \nu_\tau) + g_{S_L} (\bar{c}P_L b) (\bar{\tau}P_L \nu_\tau) + g_{S_R} (\bar{c}P_R b) (\bar{\tau}P_L \nu_\tau) + g_T (\bar{c}\sigma_{\mu\nu} P_L b) (\bar{\tau}\sigma^{\mu\nu} P_L \nu_\tau) \bigg] + h.c.$$

- 5 Wilson Coefficents.
- Leptonic part of the amplitude can be computed exactly.
- The quark part of the amplitude has to be parameterized in term of Hadronic Form Factors.

$$\langle \Lambda_c | \bar{c}b | \Lambda_b \rangle = F_0(q^2) \frac{M_{\Lambda_b} - M_{\Lambda_c}}{m_b - m_c} \overline{u}_{\Lambda_c} u_{\Lambda_b}$$
$$\langle \Lambda_c | \bar{c}\gamma_5 b | \Lambda_b \rangle = G_0(q^2) \frac{M_{\Lambda_b} + M_{\Lambda_c}}{m_b + m_c} \overline{u}_{\Lambda_c} \gamma_5 u_{\Lambda_b}$$

Computing baryon observables

• From quark to hadrons : Form Factors parameterization:

Obtained from LQCD

 $\begin{array}{l} \Lambda_b \rightarrow \Lambda_c \ell \nu & \mbox{[Detmold, Lehner, Meinel `15] [Datta, Kamali, Meinel, Rashed `17]} \\ \Lambda_b \rightarrow \Lambda \ell_1 \ell_2 & \mbox{[Detmold, Meinel `16]} \\ \Lambda_c \rightarrow \Lambda \ell \nu & \mbox{[Meinel `17] (Missing tensor form factors)} \\ \Lambda_b \rightarrow \Lambda_c^* \ell \nu & \mbox{[Meinel, Rendon `21] (Only for high-} q^2) \end{array}$

3-body decay

• Similar to the meson case,

$$\frac{d^2\Gamma}{dq^2d\cos\theta} = \frac{\sqrt{\lambda_{\Lambda_b\Lambda_c}\left(q^2\right)}}{1024\pi^3 M_{\Lambda_b}^3} \left(1 - \frac{m_l^2}{q^2}\right) \sum_{\lambda_l\lambda_b\lambda_c} \left|\mathcal{M}_{\lambda_c}^{(3)\lambda_b\lambda_l}\right|^2.$$

• But with approx. twice the number of d.o.f:

$$\frac{\mathrm{d}^2\Gamma(B \to D^{(*)}\ell^{\lambda_l}\nu)}{\mathrm{d}q^2\mathrm{d}\cos\theta} = a^{\lambda_l}(q^2) + b^{\lambda_l}(q^2)\cos\theta + c^{\lambda_l}(q^2)\cos^2\theta \to 4 \text{ observables}$$

$$\frac{\mathrm{d}^{2}\Gamma(\Lambda_{b} \to \Lambda_{c}^{\lambda_{c}}\ell^{\lambda_{l}}\nu)}{\mathrm{d}q^{2}\mathrm{d}\cos\theta} = a_{\lambda_{c}}^{\lambda_{l}}(q^{2}) + b_{\lambda_{c}}^{\lambda_{l}}(q^{2})\cos\theta + c_{\lambda_{c}}^{\lambda_{l}}(q^{2})\cos^{2}\theta \to 10$$

$$\to 10$$
observables
$$\Gamma_{\mathrm{tot}} \propto \int \mathrm{d}q^{2}\left(a + \frac{c}{3}\right)$$

First LHCb measurement

For B-physics, only one is currently measured: $\mathcal{B}(\Lambda_b \to \Lambda_c \tau \nu)$ by LHCb.

$$\mathcal{R}(\Lambda_c) = \frac{\mathcal{B}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)}$$

$$\mathcal{R}(\Lambda_c)_{|\mathrm{LHCb}} = 0.242 \pm 0.076$$

 $\mathcal{R}(\Lambda_c)_{|\mathrm{SM}} = 0.333 \pm 0.013$

[LHCb 2201.03497]

 \rightarrow Compatible with SM \rightarrow Opposite trend.

• While $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ are 2.0 σ and 2.2 σ above SM prediction.

But with uncertainties 5× smaller.

How does it change the flavor $b \rightarrow c \tau \nu$ fit ?

Too soon to change the fit

8

Too soon to change the fit

- Allowed regions for the Wilson coefficients remain practically the same.
- The $\chi^2_{\rm min}$ increases significantly.

Adding the secondary decay

$$B \to D^* (\to D\pi) \tau \nu$$
$$\Lambda_b \to \Lambda_c (\to \Lambda\pi) \tau \nu$$

[Gutsche, Ivanov, Körner, Lyubovitskij, Santorelli, Habyl `15] [Böer, Kokulu, Toelstede, van Dyk `19] [Datta, Kamali, Meinel, Rashed `17] [Penalva, Hernandez, Nieves, `19] [Mu, Li, Zou, Zhu `19]

Can be computed using 2 physical parameters: $\Gamma(\Lambda_c \to \Lambda \pi)$ and

$$\alpha = \frac{\left\langle \Lambda^{+} \pi | \Lambda_{c}^{+} \right\rangle^{2} - \left\langle \Lambda^{-} \pi | \Lambda_{c}^{-} \right\rangle^{2}}{\left\langle \Lambda^{+} \pi | \Lambda_{c}^{+} \right\rangle^{2} + \left\langle \Lambda^{-} \pi | \Lambda_{c}^{-} \right\rangle^{2}}.$$

	Observed primary Branching Fraction	Observed secondary Branching Fraction	Asymmetry α
$\Lambda_b \to \Lambda(\to p\pi)\ell\ell$	$\sim 10^{-6}$	$(63.9 \pm 0.05)\%$	0.732 ± 0.014
$\Lambda_c \to \Lambda(\to p\pi)\ell\nu$	$(1.30 \pm 0.07)\%$	$(63.9 \pm 0.05)\%$	0.732 ± 0.014
$\Lambda_b o \Lambda_c (o \Lambda \pi) au u$	$(1.50 \pm 0.38)\%$	$(1.30 \pm 0.07)\%$	-0.84 ± 0.09
$\Lambda_b \to \Lambda_c (\to pK_S) \tau \nu$	$(1.50 \pm 0.38)\%$	$(1.59 \pm 0.08)\%$	0.2 ± 0.5

For comparison, LHCb used $\mathcal{B}(\Lambda_c \to pK^-\pi^+) = (6.28 \pm 0.32)\%$.

Some observables

- 38 observables in total.
- Some combinations can be measured by event counting:

- g_{V_L} only affects the total Branching Fraction \rightarrow Distribution is SM-like.
- D_4 and E_4 are sensitive to imaginary part of Wilson Coefficients.

 \rightarrow CP-violating phase

Some observables

• Angular observables can help discriminate among various scenarios, even if branching fraction are compatible with SM.

BESIII angular analysis

- Last year, BESIII published the first angular analysis of $\Lambda_c \to \Lambda e \nu$.
- However, they assumed no NP, and used it to extract experimental FFs.
- They found a bad agreement, even though the total branching fraction is SM-like.

13

BESIII angular analysis

• The discrepancy cannot be seen on the branching fraction alone, only with the angular distribution (at high-q²).

BESIII angular analysis

- It is possible to improve the fit significantly by adding NP.
- $g_{V_R}^e = 0.19, \ g_{V_L}^e = 0.056$:

• Does not really agree with meson decay:

15

LFV case

• Every cross-section expressed in terms of "magic numbers".

$$\begin{aligned} \mathcal{B}(\Lambda_b \to \Lambda \ell_i^- \ell_j^+) &\times 10^9 = a_9 |C_9 + C_{9'}|^2 + a_{10} |C_{10} + C_{10'}|^2 + a_S |C_S + C_{S'}|^2 + a_P |C_P + C_{P'}|^2 \\ &+ b_9 |C_9 - C_{9'}|^2 + b_{10} |C_{10} - C_{10'}|^2 + b_S |C_S - C_{S'}|^2 + b_P |C_P - C_{P'}|^2 \\ &+ c_{9S} \operatorname{Re}[(C_9 + C_{9'})(C_S + C_{S'})^*] + c_{10P} \operatorname{Re}[(C_{10} + C_{10'})(C_P + C_{P'})^*], \end{aligned}$$

• If $m_{\ell_i} \ll m_{\ell_j}$:

 $a_9 \simeq a_{10}, \quad b_9 \simeq b_{10}, \quad c_{9S} \simeq -c_{10P}, \quad a_S \simeq a_P, \quad b_S \simeq b_P,$

→ Lepton mass hierarchy makes the LH/RH "scalar only" or "vector only" scenarios proportional to a single magic number.

Process hierarchy

• We can directly compare the magic numbers:

Indirect constraints

Decay	Exp. Limit	Decay	Exp. Limit	Decay	Exp. Limit
$B^0 ightarrow e \mu$	1.0×10^{-9}	$B^0 ightarrow e au$	$1.6 imes 10^{-5}$	$B^0 o \mu \tau$	1.2×10^{-5}
$B^+ \to \pi^+ e \mu$	$1.7 imes 10^{-7}$	$B^+ \to \pi^+ e \tau$	$7.5 imes 10^{-5}$	$B^+ \to \pi^+ \mu \tau$	7.2×10^{-5}
$B_s \to e\mu$	$6.0 imes 10^{-9}$	$B_s \to e \tau$	1.4×10^{-3}	$B_s \to \mu \tau$	3.4×10^{-5}
$B^+ \to K^+ e \mu$	1.3×10^{-8}	$B^+ \to K^+ e \tau$	$3.1 imes 10^{-5}$	$B^+ \to K^+ \mu \tau$	3.1×10^{-5}
$B^0 \to K^{*0} e \mu$	$1.3 imes 10^{-8}$	$B^0 \to K^{*0} e \tau$		$B^0 o K^{*0} \mu \tau$	$1.8 imes 10^{-5}$

Concrete scenarios: LFV Higgs

• NP coupling to lepton can be described by the d=6 operator:

$$\mathcal{L}_{\text{eff}}^{(6)} \supset \frac{c_{eH}^{ij}}{\Lambda^2} \left(H^{\dagger} H \right) \left(\overline{L}_i H e_{Rj} \right) + \text{h.c.} \,.$$

• After EWSB+diagonalization:

$$\mathcal{L}_{\mathrm{Yuk}} \supset -y_{\ell}^{ij} h \,\bar{\ell}_{Li} \ell_{Rj} + \mathrm{h.c.}, \qquad \text{with} \qquad y_{\ell}^{ij} = \delta_{ij} \, \frac{\sqrt{2m_{\ell_i}}}{v} + \frac{3v^2}{2\sqrt{2}\Lambda^2} c_{eH}^{ij} \,.$$

• Contributes to $b \rightarrow q \ell_i \ell_j$ via Higgs-penguins:

• Strong constraints from $\ell_i \rightarrow \ell_j \gamma$:

Small detour: LFV Higgs

• Assuming $y_{\ell}^{\mu e}$ to be small, and considering the current constraints:

$$\begin{aligned} \mathcal{B}(\mu \to e\gamma) &< 4.2 \times 10^{-13} \\ \mathcal{B}(\tau \to e\gamma) &< 3.3 \times 10^{-8} \\ \mathcal{B}(\tau \to \mu\gamma) &< 4.2 \times 10^{-8} \end{aligned}$$

 \rightarrow We find the relation:

$$\mathcal{B}(\mu \to e\gamma) \approx 3.7 \times 10^{-13} \left[\frac{\mathcal{B}(h \to e\tau)}{10^{-4}} \right] \left[\frac{\mathcal{B}(h \to \mu\tau)}{10^{-4}} \right]$$

Concrete scenarios: LFV Higgs

- From this plot, we find an upper limit on $y_{\ell}^{e\tau}$ and $y_{\ell}^{\mu\tau}$.
- Using the matching:

$$\begin{split} C_{S(P)}^{(q)\,ij} &= -\frac{y_{\ell}^{ij} \pm y_{\ell}^{ji\,*}}{2} \frac{m_b}{v} \frac{1}{16\pi\alpha_{\rm em}} \\ &\times \left[\frac{6x_t}{x_h} - \frac{2x_t^3}{(1-x_t)^3} \log x_t + \frac{4x_t^2}{(1-x_t)^3} \log x_t - \frac{x_t^2}{(1-x_t)^2} + \frac{3x_t}{(1-x_t)^2} \right], \end{split}$$

 \rightarrow Loop and b-suppressed

• We find:

$$\mathcal{B}(\Lambda_b \to \Lambda e\tau) < 8 \times 10^{-15} ,$$

$$\mathcal{B}(\Lambda_b \to \Lambda \mu \tau) < 6 \times 10^{-15} .$$

 \rightarrow Cannot be seen by experiment

Concrete scenarios: LFV Z'

• SM extended with a $Z' \sim (\mathbf{1}, \mathbf{1}, 0)$.

$$\mathcal{L}_{Z'} \supset \sum_{\psi} g_{\psi}^{ij} \, \bar{\psi}_i \gamma^{\mu} \psi_j \, Z'^{\mu} \,,$$

EFT matching

Concrete scenarios: LFV Z'

• Putting all the constraints together :

 \rightarrow can be as large as 10^{-6} !

Conclusion

- $\Lambda_b \rightarrow \Lambda_c \ell \nu$ can provide another test of LFUV.
- Hadronic uncertainties are under control thanks to LQCD.
- Measurements of $\mathcal{R}(\Lambda_c)$ by LHCb in 2022, do not change the global picture.
- Angular distribution offer the possibility of measuring many observables, sensitive to every combination of WC.
- BESIII analysis of $\Lambda_c \rightarrow \Lambda e\nu$ favors right-handed vector NP, but contradicts other meson measurements.
- LFV decays of hadrons and mesons are actively being searched.
- Their hierarchy gives a large clue about the structure of NP.
- Explicit models: LFV Z' can still produce experimentally accessible LFV decays, LFV H cannot.