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The problem of optimal inference
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How do we optimally extract information from the maps?



The problem of optimal inference

For a Gaussian field, the two point function contains all 
information
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For a non-Gaussian field, the problem is much harder

?
1) What are the optimal observables?
2) What is the likelihood?



The problem of optimal inference

Using full hydro simulations we can in principle solve the problem

Simulation-based inference

1) run a huge number of simulations
2) “learn” the likelihood for the density field
3) compare numerical forward model to data, varying all ICs

This is not computationally feasible at the moment



Perturbative forward modeling

IC nonlinear density field using PT

3

over these large displacements when computing the two-point function famously leads to the broadening of the BAO
peak [85–87]. This can substantially degrade the measurement of the BAO scale, one of the most important cosmological
parameters inferred from galaxy surveys. On the other hand, assuming that the e�ects of large displacements are
properly taken into account, the forward modeling can recover the full linear theory information about the position of
the BAO peak, as demonstrated in [81]. This is not a surprise, since the same knowledge of the long-short couplings
at the map level is exploited in the BAO reconstruction algorithms, used in practice to sharpen the BAO peak and
improve measurement of its position [86, 88, 89].

In this paper we explore less-known examples of di�erent type where averaging over the long-short interactions leads
to degradation of errors rather than dilution of signal. Also in such cases the field-level inference can be more optimal
than the conventional analysis based on the n-point functions. We identify new large parameters associated to each
of these examples and show that they are related to the variance of powers of the density contrast ”. For instance,
depending on the shape of the linear power spectrum, the variance of ”2 on large scales can be very large, even if the
variance of ” is small. In the analyses using n-point functions, these large parameters can lead to sizable contributions
to the covariance matrices, impacting the inference of all cosmological parameters. For example, long modes can
modulate the short-scale fluctuations, which can lead to a large scatter in the power spectrum on small scales once the
average over the long modes is taken [2, 90–93]. As we will see, this contribution to the small scale covariance matrix
is exactly controlled by the variance of ”2. The long-short couplings can impact the covariance on large scales as
well. The short modes can couple (through the nonlinear bias) to produce the long-wavelength field of biased tracers3

with flat power spectrum. Once the short modes are averaged over, their contribution to the power spectrum and the
covariance matrix (controlled again by the parameter related to the variance of ”2) is indistinguishable from the shot
noise. However, depending on the observed sample, the amplitude of this noise can be much larger than the Poisson
prediction, producing larger error bars than expected. Unlike in the standard analyses, none of these issues impact
cosmological inference at the field level, where all relevant long-shot couplings are automatically computed and taken
into account.

One important feature of these examples is that unexpectedly large contributions to the covariance do not come
from the fully nonlinear regime, but rather from couplings of long and short modes. Such interactions are usually
easier to compute in perturbation theory or measure in simulations. Given this, instead of doing the full forward
modeling, one can look for simple modified estimators for cosmological parameters which have nearly optimal variance.
This is similar to the case of local primordial non-Gaussianity in the cosmic microwave background (CMB) where the
optimal estimators for f local

NL
have to take into account the realization of the long modes in the survey [94]. In many

aspects we follow the logic of [94] and adopt it to relevant cases in large-scale structure. One important result of our
analysis is that the perturbatively-calculated posterior can be used to motivate the form of optimal estimators and we
will show a couple of examples that illustrate this point.

The paper is structured as follows: in Section II we derive perturbative expressions for errors on cosmological
parameters at the field level (with and without marginalization over linear bias); in Section III we compare power
spectrum plus bispectrum to forward modeling; in Section IV we discuss three cases where additional parameters
beside the variance of the density field are present in the game and consequently the field-level analysis can be di�erent
that standard ones; we conclude in Section V. Appendix A collects some non-perturbative results beyond what we
derive in Section II; Appendix B shows how to perturbatively include a finite shot noise at the field level.

II. FROM LIKELIHOOD TO POSTERIOR – PERTURBATIVE INVERSION

In this section we show how to arrive at the expression for the full posterior and the Fisher matrix for cosmological
parameters at the field level, in the limit of small noise. We apply this formula to the case where the only parameter
in the theory is the nonlinear scale kNL and derive explicit expressions for the posterior and the Fisher matrix at the
one-loop order.

A. Posterior in the limit of small noise

Let us imagine that the forward model for the nonlinear galaxy field ”g is known in terms of the linear density field ”.
We collect cosmological and bias parameters in ◊. The forward model is then given by

”g = ”g[”, ◊] + ‘g (1)

3
Note that this is not true for dark matter, since the mass and momentum conservation imply that the long modes produced by interactions

of the short modes are suppressed by k2/q2
, where k is a wavenumber of the long mode and q a typical wavenumber of the short modes.

This can be checked explicitly in perturbation theory. For instance, in the limit q1 ¥ ≠q2 the F2(q1, q2) kernels scale as k2/q2
1 , where

k = q1 + q2.

1) The map from ICs to the nonlinear field is simple

2) The likelihood is Gaussian on large scales

4

for a given noise field ‘g. On large scales we can approximate the likelihood of the galaxy density field as a Gaussian

L[”̂g|”, ◊] = normalization ◊ exp
3

≠
1
2

⁄

k

|”̂g(k) ≠ ”g[”, ◊](k)|2
P‘

4
, (2)

where P‘ is the noise power spectrum. This form of the likelihood can be rigorously justified in the perturbative
framework that we are going to use throughout the paper. The fiducial galaxy field ”̂g is given in terms of fiducial
values of the initial field ”̂, fiducial values of parameters ◊̂ and a fiducial noise realization ‘̂g by

”̂g = ”g[”̂, ◊̂] + ‘̂g . (3)

Note that ” is an independent variable that does not depend in ◊, even though it is drawn from a Gaussian distribution
with the variance P (k, ◊). The normalization in Eq. (2) is such that

⁄
D”̂g L[”̂g|”, ◊] = 1 . (4)

Ultimately, we are interested in the posterior for cosmological parameters given some realization of the observed
galaxy density field. This posterior is obtained by integrating the likelihood multiplied by the prior on initial conditions
”. We will assume that ” has a Gaussian distribution with the variance given by the linear power spectrum P (k).
Defining p(◊) to be the prior on cosmological parameters, the posterior is expressed as

P[◊|”̂g] = normalization ◊

⁄
D” exp

3
≠

1
2

⁄

k

|”(k)|2
P (k) ≠

1
2

⁄

k

|”̂g(k) ≠ ”g[”, ◊](k)|2
P‘

4
◊ p(◊) , (5)

where we have now included the normalization of the prior in the overall factor. In what follows we will set p(◊) = 1 for
simplicity and having in mind situations in which constraints on cosmological parameters are dominated by the data.
This choice does not change any of our conclusions and if needed the e�ect of the prior p(◊) can be straightforwardly
included in all our equations. Note that, contrary to our starting point, the power spectrum P (k) does not depend on
◊. It is easy to see why there is no loss of generality in making this assumption. Indeed, consider the case in which
P = P (k, ◊), which is the case of interest in cosmology. It is then possible to perform the following change of variables
”(k) æ ”(k)/P 1/2(k, ◊). In terms of the new integration variables the prior is a normalized Gaussian with unit power
spectrum, and all dependence of parameters is in the forward model. In the rest of the paper we will not need such a
drastic change of variables. It is enough to use

”(k) æ ·(k, ◊) ”(k) , with ·(k, ◊) = M(k, ◊)
M(k, ◊̂)

, (6)

where M(k, ◊) is the linear transfer function which relates the primordial potential to ” (for the amplitude of the
linear field A, we simply have ·(k, ◊) = A/Â). In this way the prior for the new ” field is a normalized Gaussian with
power spectrum equal to the fiducial linear power spectrum, which exactly agrees with Eq. (5).

The main di�culty in calculating the posterior is to carry out the integral in Eq. (5). In general, this cannot be
done analytically and one has to rely on numerical sampling of the likelihood.4 In most of the paper we will focus
on the limit of small noise, relevant for dense spectroscopic samples on large scales. In this case one can expand the
posterior in P‘ which simplifies calculations significantly. For the time being we focus only on the leading order in the
P‘ æ 0 limit, in which the posterior becomes

P[◊|”̂g] = normalization ◊

⁄
D” exp

3
≠

1
2

⁄

k

|”(k)|2
P (k)

4
”(Œ)

D

1
”̂g ≠ ”g[”, ◊]

2
, (7)

where the normalization is now only that of the prior and, in the same way as P (k), it does not depend on ◊ (hence
we will drop it from now on to keep the notation as contained as possible). We leave the discussion of higher orders in
P‘ for Section IV B. In order to exploit the delta function in the integrand of the posterior, we can do the following
change of variables ” æ ”g. The posterior can be then witten as

P[◊|”̂g] =
⁄

D”g

----
ˆ”

ˆ”g

---- exp
3

≠
1
2

⁄

k

|”[”g, ◊](k)|2
P (k)

4
”(Œ)

D
(”̂g ≠ ”g) © eTr ln J[”̂g,◊]≠ 1

2
‰2

prior
[”̂g,◊] , (8)

4
A simple analytical solution exists only if the forward model is linear in the initial conditions. In this case the integrand is Gaussian in ”
and the integral can be solved to obtain a well-known expression for the posterior in linear theory. We also refer to [32] for a discussion

of how to carry out the path integral by expanding around a saddle point found numerically. Ref. [95] instead discusses the saddle point

in the high noise limit.
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for a given noise field ‘g. On large scales we can approximate the likelihood of the galaxy density field as a Gaussian

L[”̂g|”, ◊] = normalization ◊ exp
3

≠
1
2

⁄

k

|”̂g(k) ≠ ”g[”, ◊](k)|2
P‘

4
, (2)

where P‘ is the noise power spectrum. This form of the likelihood can be rigorously justified in the perturbative
framework that we are going to use throughout the paper. The fiducial galaxy field ”̂g is given in terms of fiducial
values of the initial field ”̂, fiducial values of parameters ◊̂ and a fiducial noise realization ‘̂g by

”̂g = ”g[”̂, ◊̂] + ‘̂g . (3)

Note that ” is an independent variable that does not depend in ◊, even though it is drawn from a Gaussian distribution
with the variance P (k, ◊). The normalization in Eq. (2) is such that

⁄
D”̂g L[”̂g|”, ◊] = 1 . (4)

Ultimately, we are interested in the posterior for cosmological parameters given some realization of the observed
galaxy density field. This posterior is obtained by integrating the likelihood multiplied by the prior on initial conditions
”. We will assume that ” has a Gaussian distribution with the variance given by the linear power spectrum P (k).
Defining p(◊) to be the prior on cosmological parameters, the posterior is expressed as

P[◊|”̂g] = normalization ◊

⁄
D” exp

3
≠
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⁄

k

|”(k)|2
P (k) ≠

1
2

⁄

k

|”̂g(k) ≠ ”g[”, ◊](k)|2
P‘

4
◊ p(◊) , (5)

where we have now included the normalization of the prior in the overall factor. In what follows we will set p(◊) = 1 for
simplicity and having in mind situations in which constraints on cosmological parameters are dominated by the data.
This choice does not change any of our conclusions and if needed the e�ect of the prior p(◊) can be straightforwardly
included in all our equations. Note that, contrary to our starting point, the power spectrum P (k) does not depend on
◊. It is easy to see why there is no loss of generality in making this assumption. Indeed, consider the case in which
P = P (k, ◊), which is the case of interest in cosmology. It is then possible to perform the following change of variables
”(k) æ ”(k)/P 1/2(k, ◊). In terms of the new integration variables the prior is a normalized Gaussian with unit power
spectrum, and all dependence of parameters is in the forward model. In the rest of the paper we will not need such a
drastic change of variables. It is enough to use

”(k) æ ·(k, ◊) ”(k) , with ·(k, ◊) = M(k, ◊)
M(k, ◊̂)

, (6)

where M(k, ◊) is the linear transfer function which relates the primordial potential to ” (for the amplitude of the
linear field A, we simply have ·(k, ◊) = A/Â). In this way the prior for the new ” field is a normalized Gaussian with
power spectrum equal to the fiducial linear power spectrum, which exactly agrees with Eq. (5).

The main di�culty in calculating the posterior is to carry out the integral in Eq. (5). In general, this cannot be
done analytically and one has to rely on numerical sampling of the likelihood.4 In most of the paper we will focus
on the limit of small noise, relevant for dense spectroscopic samples on large scales. In this case one can expand the
posterior in P‘ which simplifies calculations significantly. For the time being we focus only on the leading order in the
P‘ æ 0 limit, in which the posterior becomes

P[◊|”̂g] = normalization ◊

⁄
D” exp

3
≠

1
2

⁄

k

|”(k)|2
P (k)

4
”(Œ)

D

1
”̂g ≠ ”g[”, ◊]

2
, (7)

where the normalization is now only that of the prior and, in the same way as P (k), it does not depend on ◊ (hence
we will drop it from now on to keep the notation as contained as possible). We leave the discussion of higher orders in
P‘ for Section IV B. In order to exploit the delta function in the integrand of the posterior, we can do the following
change of variables ” æ ”g. The posterior can be then witten as

P[◊|”̂g] =
⁄

D”g

----
ˆ”

ˆ”g

---- exp
3

≠
1
2

⁄

k

|”[”g, ◊](k)|2
P (k)

4
”(Œ)

D
(”̂g ≠ ”g) © eTr ln J[”̂g,◊]≠ 1

2
‰2

prior
[”̂g,◊] , (8)

4
A simple analytical solution exists only if the forward model is linear in the initial conditions. In this case the integrand is Gaussian in ”
and the integral can be solved to obtain a well-known expression for the posterior in linear theory. We also refer to [32] for a discussion

of how to carry out the path integral by expanding around a saddle point found numerically. Ref. [95] instead discusses the saddle point

in the high noise limit.
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for a given noise field ‘g. On large scales we can approximate the likelihood of the galaxy density field as a Gaussian

L[”̂g|”, ◊] = normalization ◊ exp
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≠
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where P‘ is the noise power spectrum. This form of the likelihood can be rigorously justified in the perturbative
framework that we are going to use throughout the paper. The fiducial galaxy field ”̂g is given in terms of fiducial
values of the initial field ”̂, fiducial values of parameters ◊̂ and a fiducial noise realization ‘̂g by

”̂g = ”g[”̂, ◊̂] + ‘̂g . (3)

Note that ” is an independent variable that does not depend in ◊, even though it is drawn from a Gaussian distribution
with the variance P (k, ◊). The normalization in Eq. (2) is such that

⁄
D”̂g L[”̂g|”, ◊] = 1 . (4)

Ultimately, we are interested in the posterior for cosmological parameters given some realization of the observed
galaxy density field. This posterior is obtained by integrating the likelihood multiplied by the prior on initial conditions
”. We will assume that ” has a Gaussian distribution with the variance given by the linear power spectrum P (k).
Defining p(◊) to be the prior on cosmological parameters, the posterior is expressed as
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where we have now included the normalization of the prior in the overall factor. In what follows we will set p(◊) = 1 for
simplicity and having in mind situations in which constraints on cosmological parameters are dominated by the data.
This choice does not change any of our conclusions and if needed the e�ect of the prior p(◊) can be straightforwardly
included in all our equations. Note that, contrary to our starting point, the power spectrum P (k) does not depend on
◊. It is easy to see why there is no loss of generality in making this assumption. Indeed, consider the case in which
P = P (k, ◊), which is the case of interest in cosmology. It is then possible to perform the following change of variables
”(k) æ ”(k)/P 1/2(k, ◊). In terms of the new integration variables the prior is a normalized Gaussian with unit power
spectrum, and all dependence of parameters is in the forward model. In the rest of the paper we will not need such a
drastic change of variables. It is enough to use

”(k) æ ·(k, ◊) ”(k) , with ·(k, ◊) = M(k, ◊)
M(k, ◊̂)

, (6)

where M(k, ◊) is the linear transfer function which relates the primordial potential to ” (for the amplitude of the
linear field A, we simply have ·(k, ◊) = A/Â). In this way the prior for the new ” field is a normalized Gaussian with
power spectrum equal to the fiducial linear power spectrum, which exactly agrees with Eq. (5).

The main di�culty in calculating the posterior is to carry out the integral in Eq. (5). In general, this cannot be
done analytically and one has to rely on numerical sampling of the likelihood.4 In most of the paper we will focus
on the limit of small noise, relevant for dense spectroscopic samples on large scales. In this case one can expand the
posterior in P‘ which simplifies calculations significantly. For the time being we focus only on the leading order in the
P‘ æ 0 limit, in which the posterior becomes

P[◊|”̂g] = normalization ◊
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where the normalization is now only that of the prior and, in the same way as P (k), it does not depend on ◊ (hence
we will drop it from now on to keep the notation as contained as possible). We leave the discussion of higher orders in
P‘ for Section IV B. In order to exploit the delta function in the integrand of the posterior, we can do the following
change of variables ” æ ”g. The posterior can be then witten as

P[◊|”̂g] =
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4
A simple analytical solution exists only if the forward model is linear in the initial conditions. In this case the integrand is Gaussian in ”
and the integral can be solved to obtain a well-known expression for the posterior in linear theory. We also refer to [32] for a discussion

of how to carry out the path integral by expanding around a saddle point found numerically. Ref. [95] instead discusses the saddle point

in the high noise limit.

𝒩

This is usually solved numerically, but this is still very hard

Numerically it appears that the field level is more constraining 
than the analysis based on a few leading n-point functions

How can we understand this result? Can we trust it?
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1) Assume small noise

2) Assume perturbative model with a single expansion parameter

Δ2(k) = ∫
d3q

(2π)3
P(q)

Compute the Fisher matrix for the filed level analysis perturbatively 
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where P‘ is the noise power spectrum. This form of the likelihood can be rigorously justified in the perturbative
framework that we are going to use throughout the paper. The fiducial galaxy field ”̂g is given in terms of fiducial
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Note that ” is an independent variable that does not depend in ◊, even though it is drawn from a Gaussian distribution
with the variance P (k, ◊). The normalization in Eq. (2) is such that

⁄
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Ultimately, we are interested in the posterior for cosmological parameters given some realization of the observed
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Defining p(◊) to be the prior on cosmological parameters, the posterior is expressed as

P[◊|”̂g] = normalization ◊

⁄
D” exp

3
≠

1
2

⁄

k

|”(k)|2
P (k) ≠

1
2

⁄

k

|”̂g(k) ≠ ”g[”, ◊](k)|2
P‘

4
◊ p(◊) , (5)

where we have now included the normalization of the prior in the overall factor. In what follows we will set p(◊) = 1 for
simplicity and having in mind situations in which constraints on cosmological parameters are dominated by the data.
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where M(k, ◊) is the linear transfer function which relates the primordial potential to ” (for the amplitude of the
linear field A, we simply have ·(k, ◊) = A/Â). In this way the prior for the new ” field is a normalized Gaussian with
power spectrum equal to the fiducial linear power spectrum, which exactly agrees with Eq. (5).

The main di�culty in calculating the posterior is to carry out the integral in Eq. (5). In general, this cannot be
done analytically and one has to rely on numerical sampling of the likelihood.4 In most of the paper we will focus
on the limit of small noise, relevant for dense spectroscopic samples on large scales. In this case one can expand the
posterior in P‘ which simplifies calculations significantly. For the time being we focus only on the leading order in the
P‘ æ 0 limit, in which the posterior becomes
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where the normalization is now only that of the prior and, in the same way as P (k), it does not depend on ◊ (hence
we will drop it from now on to keep the notation as contained as possible). We leave the discussion of higher orders in
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A simple analytical solution exists only if the forward model is linear in the initial conditions. In this case the integrand is Gaussian in ”
and the integral can be solved to obtain a well-known expression for the posterior in linear theory. We also refer to [32] for a discussion

of how to carry out the path integral by expanding around a saddle point found numerically. Ref. [95] instead discusses the saddle point

in the high noise limit.
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where P‘ is the noise power spectrum. This form of the likelihood can be rigorously justified in the perturbative
framework that we are going to use throughout the paper. The fiducial galaxy field ”̂g is given in terms of fiducial
values of the initial field ”̂, fiducial values of parameters ◊̂ and a fiducial noise realization ‘̂g by
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Note that ” is an independent variable that does not depend in ◊, even though it is drawn from a Gaussian distribution
with the variance P (k, ◊). The normalization in Eq. (2) is such that
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Ultimately, we are interested in the posterior for cosmological parameters given some realization of the observed
galaxy density field. This posterior is obtained by integrating the likelihood multiplied by the prior on initial conditions
”. We will assume that ” has a Gaussian distribution with the variance given by the linear power spectrum P (k).
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where we have now included the normalization of the prior in the overall factor. In what follows we will set p(◊) = 1 for
simplicity and having in mind situations in which constraints on cosmological parameters are dominated by the data.
This choice does not change any of our conclusions and if needed the e�ect of the prior p(◊) can be straightforwardly
included in all our equations. Note that, contrary to our starting point, the power spectrum P (k) does not depend on
◊. It is easy to see why there is no loss of generality in making this assumption. Indeed, consider the case in which
P = P (k, ◊), which is the case of interest in cosmology. It is then possible to perform the following change of variables
”(k) æ ”(k)/P 1/2(k, ◊). In terms of the new integration variables the prior is a normalized Gaussian with unit power
spectrum, and all dependence of parameters is in the forward model. In the rest of the paper we will not need such a
drastic change of variables. It is enough to use
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where M(k, ◊) is the linear transfer function which relates the primordial potential to ” (for the amplitude of the
linear field A, we simply have ·(k, ◊) = A/Â). In this way the prior for the new ” field is a normalized Gaussian with
power spectrum equal to the fiducial linear power spectrum, which exactly agrees with Eq. (5).

The main di�culty in calculating the posterior is to carry out the integral in Eq. (5). In general, this cannot be
done analytically and one has to rely on numerical sampling of the likelihood.4 In most of the paper we will focus
on the limit of small noise, relevant for dense spectroscopic samples on large scales. In this case one can expand the
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where the two terms in the final result, one coming from the prior and the other one coming from the Jacobian, are
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As expected, the final result depends on the realization of the galaxy density field ”̂g and parameters ◊. The key
ingredient needed to find the posterior P[◊|”̂g] is the inverse of the forward model ”[”g, ◊], which allows us to compute
‰2

prior
and J . Finding ”[”g, ◊] is in general a very di�cult task. However, in perturbative forward modeling the inverse

model is also perturbative and can be calculated analytically. The full posterior can be then consistently computed up
to a given power of the variance of the density field, which resembles the more familiar loop expansion for correlation
functions. Such posterior can be used to do cosmological inference without the need to run MCMC, and on large scales
it is guaranteed to lead to optimal constraints on cosmological parameters. We will show a few explicit perturbative
examples throughout the paper.

Before proceeding, let us add two more comments about Eq. (8). First, we are assuming that the change of variables
is one-to-one: in other words, we consider only the saddle point in the likelihood connected to linear theory. Other
solutions will be present if the forward model is pushed to short scales (e.g. due to shell crossing, see Ref. [96] for a
discussion), but on large scales the assumption of a single solution is correct. The second observation regards the
change of variables itself: we invert ” = ”≠1

g [”g, ◊] for varying ◊. Indeed, the Dirac delta in Eq. (7) is a Dirac delta in
a space of dimension equal to the number of Fourier modes of the linear field (as is clear from the expression of the
Gaussian likelihood, which involves an integral in d3k). Hence, even if ”g = ”̂g we do not obtain ” = ”̂: we do so only
if ◊ = ◊̂. The procedure is the same as what done in Ref. [94], in which similar calculations were carried out in the
context of constraints on local primordial non-Gaussianity from higher-order statistics of the CMB.

B. Posterior in the perturbative forward model

In order to derive explicit expression for the posterior P [◊|”̂g], we will assume that the perturbative forward model can
be written as
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where Xn are perturbation theory kernels. Note that the whole dependence on cosmological parameters is in the
kernels Xn. For example, this is the form of the nonlinear density field in Eulerian perturbation theory and for biased
tracers. Since we assume that the only parameter in the theory is the variance of the density field, there are no large
displacements in this ansatz. This can be achieved in practice by the appropriate choice of the power spectrum for
which the velocity dispersion is small.

With our assumptions the forward model can be inverted perturbatively on large scales, i.e.
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+Œÿ
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where the Yn kernels can be calculated in term of the original nonlinearities Xn. Up to cubic order, they are given by

Y1(◊) = X≠1

1
(◊) , (12a)

Y2(◊; p1, p2) = ≠X≠3

1
(◊)X2(◊; p1, p2) , (12b)

Y3(◊; p1, p2, p3) = 2
3X≠5

1
(◊)

5
X2(◊; p1, p2 + p3)X2(◊; p2, p3) + X2(◊; p2, p1 + p3)X2(◊; p1, p3)

+ X2(◊; p3, p1 + p2)X2(◊; p1, p2) ≠
3
2X1(◊)X3(◊; p1, p2, p3)

6
. (12c)

Notice that in all the examples discussed in this paper we will consider only multiplicative parameters, for which the
transfer functions, and hence the kernels X1 and Y1, are scale-independent. In more general cases, one has to keep
track of the ratio of transfer functions as in Eq. (6) when deriving the inverse kernels Yn. The inverse model defines

5

where the two terms in the final result, one coming from the prior and the other one coming from the Jacobian, are
denoted by ‰2

prior
and J respectively. More explicitly

‰2

prior
[”̂g, ◊] ©

⁄

k

|”[”̂g, ◊](k)|2
P (k) , and J [”̂g, ◊] ©

----
ˆ”[”g, ◊]

ˆ”g

----
”g=”̂g

. (9)

As expected, the final result depends on the realization of the galaxy density field ”̂g and parameters ◊. The key
ingredient needed to find the posterior P[◊|”̂g] is the inverse of the forward model ”[”g, ◊], which allows us to compute
‰2

prior
and J . Finding ”[”g, ◊] is in general a very di�cult task. However, in perturbative forward modeling the inverse

model is also perturbative and can be calculated analytically. The full posterior can be then consistently computed up
to a given power of the variance of the density field, which resembles the more familiar loop expansion for correlation
functions. Such posterior can be used to do cosmological inference without the need to run MCMC, and on large scales
it is guaranteed to lead to optimal constraints on cosmological parameters. We will show a few explicit perturbative
examples throughout the paper.

Before proceeding, let us add two more comments about Eq. (8). First, we are assuming that the change of variables
is one-to-one: in other words, we consider only the saddle point in the likelihood connected to linear theory. Other
solutions will be present if the forward model is pushed to short scales (e.g. due to shell crossing, see Ref. [96] for a
discussion), but on large scales the assumption of a single solution is correct. The second observation regards the
change of variables itself: we invert ” = ”≠1

g [”g, ◊] for varying ◊. Indeed, the Dirac delta in Eq. (7) is a Dirac delta in
a space of dimension equal to the number of Fourier modes of the linear field (as is clear from the expression of the
Gaussian likelihood, which involves an integral in d3k). Hence, even if ”g = ”̂g we do not obtain ” = ”̂: we do so only
if ◊ = ◊̂. The procedure is the same as what done in Ref. [94], in which similar calculations were carried out in the
context of constraints on local primordial non-Gaussianity from higher-order statistics of the CMB.

B. Posterior in the perturbative forward model

In order to derive explicit expression for the posterior P [◊|”̂g], we will assume that the perturbative forward model can
be written as

”g(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n) Xn(◊; p1, . . . , pn) ”(p1) · · · ”(pn) ©

+Œÿ

n=1

”(n)

g (k) , (10)

where Xn are perturbation theory kernels. Note that the whole dependence on cosmological parameters is in the
kernels Xn. For example, this is the form of the nonlinear density field in Eulerian perturbation theory and for biased
tracers. Since we assume that the only parameter in the theory is the variance of the density field, there are no large
displacements in this ansatz. This can be achieved in practice by the appropriate choice of the power spectrum for
which the velocity dispersion is small.

With our assumptions the forward model can be inverted perturbatively on large scales, i.e.

”(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n)Yn(◊; p1, . . . , pn)”g(p1) · · · ”g(pn) ©

+Œÿ

n=1

�[n]

g (k) , (11)

where the Yn kernels can be calculated in term of the original nonlinearities Xn. Up to cubic order, they are given by

Y1(◊) = X≠1

1
(◊) , (12a)

Y2(◊; p1, p2) = ≠X≠3

1
(◊)X2(◊; p1, p2) , (12b)

Y3(◊; p1, p2, p3) = 2
3X≠5

1
(◊)

5
X2(◊; p1, p2 + p3)X2(◊; p2, p3) + X2(◊; p2, p1 + p3)X2(◊; p1, p3)

+ X2(◊; p3, p1 + p2)X2(◊; p1, p2) ≠
3
2X1(◊)X3(◊; p1, p2, p3)

6
. (12c)

Notice that in all the examples discussed in this paper we will consider only multiplicative parameters, for which the
transfer functions, and hence the kernels X1 and Y1, are scale-independent. In more general cases, one has to keep
track of the ratio of transfer functions as in Eq. (6) when deriving the inverse kernels Yn. The inverse model defines

5

where the two terms in the final result, one coming from the prior and the other one coming from the Jacobian, are
denoted by ‰2

prior
and J respectively. More explicitly

‰2

prior
[”̂g, ◊] ©

⁄

k

|”[”̂g, ◊](k)|2
P (k) , and J [”̂g, ◊] ©

----
ˆ”[”g, ◊]

ˆ”g

----
”g=”̂g

. (9)

As expected, the final result depends on the realization of the galaxy density field ”̂g and parameters ◊. The key
ingredient needed to find the posterior P[◊|”̂g] is the inverse of the forward model ”[”g, ◊], which allows us to compute
‰2

prior
and J . Finding ”[”g, ◊] is in general a very di�cult task. However, in perturbative forward modeling the inverse

model is also perturbative and can be calculated analytically. The full posterior can be then consistently computed up
to a given power of the variance of the density field, which resembles the more familiar loop expansion for correlation
functions. Such posterior can be used to do cosmological inference without the need to run MCMC, and on large scales
it is guaranteed to lead to optimal constraints on cosmological parameters. We will show a few explicit perturbative
examples throughout the paper.

Before proceeding, let us add two more comments about Eq. (8). First, we are assuming that the change of variables
is one-to-one: in other words, we consider only the saddle point in the likelihood connected to linear theory. Other
solutions will be present if the forward model is pushed to short scales (e.g. due to shell crossing, see Ref. [96] for a
discussion), but on large scales the assumption of a single solution is correct. The second observation regards the
change of variables itself: we invert ” = ”≠1

g [”g, ◊] for varying ◊. Indeed, the Dirac delta in Eq. (7) is a Dirac delta in
a space of dimension equal to the number of Fourier modes of the linear field (as is clear from the expression of the
Gaussian likelihood, which involves an integral in d3k). Hence, even if ”g = ”̂g we do not obtain ” = ”̂: we do so only
if ◊ = ◊̂. The procedure is the same as what done in Ref. [94], in which similar calculations were carried out in the
context of constraints on local primordial non-Gaussianity from higher-order statistics of the CMB.

B. Posterior in the perturbative forward model

In order to derive explicit expression for the posterior P [◊|”̂g], we will assume that the perturbative forward model can
be written as

”g(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n) Xn(◊; p1, . . . , pn) ”(p1) · · · ”(pn) ©

+Œÿ

n=1

”(n)

g (k) , (10)

where Xn are perturbation theory kernels. Note that the whole dependence on cosmological parameters is in the
kernels Xn. For example, this is the form of the nonlinear density field in Eulerian perturbation theory and for biased
tracers. Since we assume that the only parameter in the theory is the variance of the density field, there are no large
displacements in this ansatz. This can be achieved in practice by the appropriate choice of the power spectrum for
which the velocity dispersion is small.

With our assumptions the forward model can be inverted perturbatively on large scales, i.e.

”(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n)Yn(◊; p1, . . . , pn)”g(p1) · · · ”g(pn) ©

+Œÿ

n=1

�[n]

g (k) , (11)

where the Yn kernels can be calculated in term of the original nonlinearities Xn. Up to cubic order, they are given by

Y1(◊) = X≠1

1
(◊) , (12a)

Y2(◊; p1, p2) = ≠X≠3

1
(◊)X2(◊; p1, p2) , (12b)

Y3(◊; p1, p2, p3) = 2
3X≠5

1
(◊)

5
X2(◊; p1, p2 + p3)X2(◊; p2, p3) + X2(◊; p2, p1 + p3)X2(◊; p1, p3)

+ X2(◊; p3, p1 + p2)X2(◊; p1, p2) ≠
3
2X1(◊)X3(◊; p1, p2, p3)

6
. (12c)

Notice that in all the examples discussed in this paper we will consider only multiplicative parameters, for which the
transfer functions, and hence the kernels X1 and Y1, are scale-independent. In more general cases, one has to keep
track of the ratio of transfer functions as in Eq. (6) when deriving the inverse kernels Yn. The inverse model defines

The inverse model:



Perturbative forward modeling

A typical example: amplitude of the linear field and linear bias

perturbative 

posterior Fisher matrix
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is given by

1
2‰2

prior
= 1

2
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k

”̂g(k)”̂g(≠k)
P (k) + A

⁄

k,p
Y2(p, k ≠ p) ”̂g(p)”̂g(k ≠ p)”̂g(≠k)

P (k)

+ 1
2A2

⁄

k,p1,p2

Y2(k ≠ p1, p1)Y2(≠k ≠ p2, p2) ”̂g(p1)”̂g(k ≠ p1)”̂g(p2)”̂g(≠k ≠ p2)
P (k)

+ A2

⁄

k,p1,p2

Y3(k ≠ p1 ≠ p2, p1, p2) ”̂g(≠k)”̂g(p1)”̂g(p2)”̂g(k ≠ p1 ≠ p2)
P (k) .

(46)

The Jacobian term is simpler and it has the following form

Tr ln J = 3A2

⁄

k,p
Y3(p, ≠p, k)”̂g(p)”̂g(≠p) ≠ 2A2

⁄

k,p
Y2(p, k ≠ p)Y2(≠p, k)”̂g(p)”̂g(≠p) . (47)

Note that the leading terms that correspond to the linear theory do not depend on A, in agreement with the
expectation that all information on the amplitude of ” comes from the nonlinearities. Given the simple dependence of
the log-posterior on A, it is possible to explicitly write down the optimal estimator

E = ≠
1

2 quadr

⁄

k,p
Y2(p, k ≠ p) ”̂g(p)”̂g(k ≠ p)”̂g(≠k)

P (k) . (48)

The numerator is the only term in the log-posterior linear in A, while in the denominator we collect all other quadratic
and quartic combinations of data ”̂g which are all proportional to A2. More precisely, we write

(≠ ln P) = (≠ ln P)(0) + A (≠ ln P)(1) + A2 (≠ ln P)(2)¸ ˚˙ ˝
© quadr

+ · · · (49)

Given the realization of data both the numerator and the denominator can be computed easily since they are just
numbers. This means that in practice one can use the exact posterior to find the constraints on cosmological parameters.

However, in order to get a better understanding of the optimal estimator and simplify equations, it is convenient to
replace the denominator by its average, assuming that it does not vary significantly between the di�erent realizations
of data. The modified estimator is given by

Ẽ = ≠
1

2 ÈquadrÍ

⁄

k,p
Y2(p, k ≠ p) ”̂g(p)”̂g(k ≠ p)”̂g(≠k)

P (k) . (50)

From now on, we will use the tilde to denote such “simplified” estimators. In our example, the explicit form of the
denominator evaluated at leading order in perturbation theory is

ÈquadrÍ = V

⁄

k,p

5
Y 2

2
(p, k ≠ p)P (p)P (|k ≠ p|)

P (k) + 2Y2(p, k ≠ p)Y2(≠p, k)P (p)
6

. (51)

Note that the contributions to prior and Jacobian with cubic kernels Y3 exactly cancel when taking the average. It is
then easy to explicitly check that the estimator is unbiased, ÈẼÍ = 1, calculating the tree-level galaxy bispectrum and
remembering that X2 = ≠Y2 in this example. Finally, computing the variance of Ẽ or using the one-loop expression
for the Fisher matrix from the previous section, we find that the error on A is given by

1
‡2

A

= 2V

⁄

k,p

5
X2

2
(p, k ≠ p)P (p)P (|k ≠ p|)

P (k) + 2X2(p, k ≠ p)X2(≠p, k)P (p)
6

. (52)

Note that 1/‡2

A = 2ÈquadrÍ. This is expected since ÈquadrÍ is the expectation value of all the terms in the negative
log-posterior which are proportional to A2 and therefore equal to the Fisher matrix for the amplitude A.

Three comments are in order. First, it is clear from the expression for the error that the degeneracy between b1 and
A is broken only by nonlinearities. The right hand side of Eq. (52) has the typical size of V

s
k P 1-loop(k)/P (k). This

is an explicit example in which we can see that the loop counting in forward modeling works the same way as in the
conventional analyses, as discussed above. Since we are always working at the one-loop order, we expect ‡2

A to be
exactly the same as the error in the standard joint one-loop power spectrum and tree-level bispectrum analysis, as we
will demonstrate soon.

The exact same error as for P+B analysis in the same model!
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where the bispectrum estimator is

B̂g(q1, q2, ≠q1 ≠ q2) = 1
V

”̂g(q1)”̂g(q2)”̂g(≠q1 ≠ q2) , (63)

and the theoretical model (remembering that Ab1 = 1) is

Bg(q1, q2, q3) = 2A X2(q1, q2)P (q1)P (q2) + 2 perms. (64)

Note that the bispectrum likelihood is Gaussian in A, with the variance
3

1
‡2

A

4

B

= V

6

⁄

q1,q2

B2
g(q1, q2, ≠q1 ≠ q2)

P (q1)P (q2)P (|q1 + q2|) . (65)

Using the explicit form of the theoretical model and keeping all the permutations, it is easy to show that
3
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⁄

k,p

5
X2

2
(p, k ≠ p)P (p)P (|k ≠ p|)

P (k) + 2X2(p, k ≠ p)X2(≠p, k)P (p)
6

. (66)

This precisely agrees with Eq. (52), confirming the expectation that the error bar in the field-analysis is the same as in
the (power spectrum and) bispectrum analysis at leading order in perturbation theory. Furthermore, this equivalence
can be checked for the value of the best fit parameter as well. Using the bispectrum likelihood we get

EB = ‡2

A ·
V

6

⁄

q1,q2

B̂g(q1, q2, ≠q1 ≠ q2) · Bg(q1, q2, ≠q1 ≠ q2)
P (q1)P (q2)P (|q1 + q2|)

= ‡2

A ·

⁄

k,p
X2(p, k ≠ p) ”̂g(p)”̂g(k ≠ p)”̂g(≠k)

P (k) , (67)

which is again identical to the field level result for the modified estimator Ẽ in Eq. (50). In conclusion, we have shown
that the perturbative forward modeling recovers the same information about the amplitude of density fluctuations as
the few leading correlation functions, computed at the same order in perturbation theory.

Even though this result was derived in a simple and analytically tractable case of Ab1 = 1, our conclusions hold
more generally. If the variance of the density field is the only expansion parameter in the theory, one can show,
order-by-order in perturbation theory, that the field-level and the n-point function based inferences of cosmological
parameters are equivalent for any cosmological parameter, although the explicit demonstration is more involved. If
other, potentially large parameters are present in the theory, this simple picture can change. We turn to these more
interesting situations next.

IV. BEYOND THE SIMPLE PERTURBATIVE MODEL

So far we have focused on a universe in which the only relevant scale for the nonlinear evolution is the nonlinear scale
kNL and the only small expansion parameter is the variance of the density field. However, the real universe can be
more complicated, and depending on the shape of the linear power spectrum other scales can play an important role in
the nonlinear dynamics. The most well-known example is the parameter related to the velocity dispersion which is
responsible for the broadening of the BAO peak. This parameter is given by [103, 104]

�2 = 1
6fi2

⁄ kNL

0

dq P (q) [1 ≠ j0(q¸BAO) + 2j2(q¸BAO)] , (68)

where ¸BAO is the BAO scale. Note that the combination of spherical Bessel functions in the square brackets is such
that it scales as q2 in the limit q π ¸≠1

BAO
. Therefore, neglecting the contribution given by the variance of the density

field on the BAO scale, we can approximate the previous expression as

�2
¥

1
6fi2

⁄ kNL

¸≠1

BAO

dq P (q) . (69)

The integral is dominated by the peak of the power spectrum, which in a �CDM-like cosmology is at the equality
scale keq. However, given that for our universe ¸≠1

BAO
¥ keq, we will keep the BAO scale as the lower boundary of the

6

ture are not absent. The presence of this feature is the
cause for the common wisdom that SPT does not work
for the correlation function. As the good performance of
the IR-resummed EFT proves, the failure is not related
to the high-k behavior of the perturbation theory but
to the missing non-perturbative treatment of motions.
One can indeed see that the IR-resummed EFT provides
a good description of the correlation function down to
10 h�1Mpc separations [? ].

Another feature of fig. ?? that is worth emphasizing is
the shift of the peak compared to the linear correlation
function. This shift is expected to be due to corrections
to ⇠̃g of order ⌃2⇠0g/`BAO, which are smaller than the
broadening e↵ects by a factor of �/`BAO [? ]. They
are not entirely fixed by symmetries since the cross cor-
relation between a displacement and other nonuniversal
e↵ects — e.g. arising from living in an over dense re-
gion — caused by a long wavelength mode contributes at
the same level. Nevertheless, they can be calculated in
perturbation theory and are included, to leading order,
in the 1-loop result, which predicts the position of the
peak reasonably well. On the other hand, the BAO re-
construction schemes, to be discussed below, reproduce
the original peak by virtue of undoing the displacements
caused by the long modes which also eliminates the above
mentioned cross correlations.

For comparison, we have also plotted in fig. ?? the
Zel’dovich correlation function, which is known to give
a relatively accurate description of the BAO spread. We
will next argue that the success of the Zel’dovich approx-
imation is because it can be formulated as (??).

Zel’dovich approximation.— The matter correlation
function can be related to the correlation function of the
relative displacement �s(z) of two points with initial
(Lagrangian) separation z:

1+⇠(x) =

Z
d3k

(2⇡)3
eik·x

Z
d3ze�ik·z

D
e�k·�s(z)

E
. (23)

In the Zel’dovich approximation, �s is replaced by its
linear expression, and the above expectation value is triv-
ially expressed in terms of the variance

Aij(z) =
⌦
�si(z)�sj(z)

↵

=

Z
d3q

qiqj

q4
Plin(q) sin

2

⇣q · z

2

⌘
.

(24)

Let us define Zel’dovich power spectrum as the result of
the inner integral in (??) at k 6= 0:

Pz(k) =

Z
d3ze�ik·ze�

1

2
Aij

(z)kikj

, (25)

which in the presence of the BAO feature contains an
oscillating component Pw

z (k). This can be approximated
by the product of a non-smoothed piece times a broad-
ening factor, as in (??): Define Aij

S (z,⇤), and Aij
L (z,⇤)

by the same integral as in (??), but taken, respectively,

linear

IR-resummed linear

IR-resummed 1-loop

Zel'dovich

80 90 100 110 120

5

10

15

20

r [h-1Mpc]
10

4 ξ
FIG. 5. Various theoretical approximations to the acoustic
peak in the correlation function as well as simulation mea-
surements. Solid: linear, dashed: IR-resummed linear, dot-
dashed: IR-resummed 1-loop, and dotted: Zel’dovich.

over short modes q > ⇤, and long modes q < ⇤. So we
have

Aij(z) = Aij
S (z,⇤) +Aij

L (z,⇤). (26)

A Zel’dovich power spectrum in the absence of the long
modes Pz,S(k,⇤), where ⇤ ⌧ k, can now be defined by

replacing Aij
! Aij

S in (??). This is the analog of the
last factor in (??): it contains the full nonlinear e↵ect of
the short modes in the Zel’dovich approximation, but no
long modes whatsoever.
Consider now the full Pz(k). The integral in (??) is

dominated by z = O(1/k), and, if k is in the support of
Pw
z (k), by z = ±`BAOk̂+O(1/k). The second contribu-

tion is what we called Pw
z (k). Here, Aij

L (z) is first of all
appreciable, and second, it can be approximated to be a
constant given by its value at z = `BAOk̂ to yield

Pw
z (k) ⇡ e�

1

2
Aij

L (`BAOk̂,⇤)kikj

Pw
z,S(k,⇤)

⇡ e�⌃
2

⇤
k2

Pw
z,S(k,⇤).

(27)

The second equality holds up to terms suppressed by
�/`BAO. Replacing ⇤ ! ✏k results in the desired ana-
log of (??).
Hence, the Zel’dovich approximation, despite being a

crude model of short scale dynamics, gives an accurate
description of BAO broadening by taking into account
the leading displacement caused by all longer wavelength

Field level is optimal, but similar to the BAO reconstruction

Affects only features
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integral, having in mind a more general power spectrum for which the maximum in principle can be at much smaller k.
Approximating the linear power spectrum as a power law such that P (k) ¥ P (kNL)(k/kNL)≠n, we can estimate �2 as

�2
¥

1
k2

NL

1
3 (kNL¸BAO)n≠1 . (70)

Depending on the slope of the power spectrum and position of the BAO peak, the enhancement (kNL¸BAO)n≠1 can be
large. In �CDM this is not dramatic, since we have n ¥ 1.8 and therefore � ¥ 2k≠1

NL
at redshift zero. However, note

that

1
3 (kNL¸BAO)n≠1

¥ 4
3

D2(z)
D2(0)

4 1≠n
3≠n

, (71)

such that � compared to k≠1

NL
grows at larger redshifts for 1 < n < 3.

The existence of a large parameter controlled by some infrared scale implies a possible breakdown of the simple
Eulerian-like forward model that we discussed in the previous section. Indeed, a simple one-loop calculation is known
to poorly describe the shape of the BAO peak in the nonlinear two-point correlation function. It is well-understood
that in order to circumvent this issue one has to employ either Lagrangian perturbation theory [45, 54, 56, 61, 105] or
modify predictions of the Eulerian perturbation theory through the so-called infrared resummation [103, 104, 106–109].
Therefore, the measurement of the BAO scale is a well-known counterexample to our statement in the previous section.
The field-level inference of ¸BAO is indeed more optimal compared to the measurement from the two-point correlation
function [81].

However, we will not further discuss this example here for two reasons. First, it is rather special, since large
displacements a�ect only features in the two-point correlation function and the only parameter that is impacted is
¸BAO. All other cosmological parameters are una�ected and our general conclusions still apply. More explicitly, the
average log-posterior is expressed in terms of the n-point functions of the data, whose smooth part is not impacted
by the large displacements [97–102]. The second reason is that the simple BAO reconstruction schemes [86, 88, 89]
recover almost optimal information on ¸BAO, making the full forward modelling unnecessary. One may still do the
forward modelling of the reconstructed field, but since in this case the significant fraction of large displacements is
cancelled, this is much closer to the regime that we discussed in the previous section and our conclusions remain valid.
It would be interesting to check this explicitly in numerical simulations and we leave it for future work.

For the rest of this section we will focus instead on di�erent type of situations in which forward modeling can be
more optimal. Unlike the BAO where the long-short interactions dilute the signal, in these examples these interactions
increase the error. More precisely, they lead to large covariance matrices for the n-point functions, making the standard
analyses suboptimal. Importantly, this a�ects all cosmological parameters. We will show how these situations arise
and what are the new large parameters associated to them.

A. Large covariance matrix from long-wavelength fluctuations

In order to see how the standard analysis can be suboptimal, we can already use the simplest example of nonlinear
dark matter field. We have shown in the previous section that in this case the optimal estimator for A is

E = 1
Npix

⁄

k

|”[”̂g, Â = 1](k)|2
P (k) , (72)

where the numerator has various combinations of the data ”̂g dictated by the inverse model. In order to highlight new
relevant parameters, in this section we will assume that the nonlinearities controlled by the variance of the density
field are very small. In this limit the inverse model is well approximated by the linear term ” = Y1”g and the higher
order loop contributions are expected to be small. The approximate estimator valid in such regime is given by

Ẽ = 1
Npix

⁄

k

|”̂g(k)|2
P (k) , (73)

assuming Y1 = 1. Such result is not surprising. This is the estimator of the nonlinear power spectrum, which in the
limit of small nonlinearities gives the correct estimate of A.

While such simplified estimator (which we will interchangeably call “naïve” and “simplified” in the following) may
lead to correct amplitude of the linear power spectrum, its variance may be large. We can easily compute that

var(Ẽ) = 2V

N2
pix

⁄

k

P 2
g (k)

P 2(k) + V

N2
pix

⁄

k,kÕ

Tg(k, ≠k, kÕ, ≠kÕ)
P (k)P (kÕ) , (74)
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var(Ẽ) = 2V

N2
pix

⁄

k

P 2
g (k)

P 2(k) + V

N2
pix

⁄

k,kÕ

Tg(k, ≠k, kÕ, ≠kÕ)
P (k)P (kÕ) , (74)

17

where Tg is connected 4-point function of the data (in the following, we will drop the hat on correlation functions of
the data for simplicity of notation). Going beyond the leading result given by the linear theory, a simple estimate of
the one-loop power spectrum in the first term and tree-level trispectrum in the second term both lead to

var(Ẽ) = 2
Npix

#
1 + O

!
�2(kmax)

"$
, (75)

where �2(kmax) is the variance of the density field at kmax used in the analysis. As one may expect, corrections to the
linear theory error bars are small at leading order in perturbation theory. However, going to the one-loop trispectrum in
var(Ẽ) something unexpected happens. Due to the particular momentum configuration there are one-loop contributions
that schematically look like

Tg(k, ≠k, kÕ, ≠kÕ) ∏ P (k)P (kÕ)
⁄

q
P 2(q) in the limit q π k, kÕ . (76)

This is a well-known result that can be explicitly derived in perturbation theory [2, 90–93] and holds even in the
nonlinear regime if one uses nonlinear responses to compute the covariance matrix [93, 110]. Importantly, such
contributions to the covariance matrix are not controlled by the variance of the density field as one may naively expect.
Instead, they are proportional to the new parameter—the variance of ”2. In general, we can define the following
dimensionless quantity

‡2

n,≠ ©

3
k3

NL

2fi2

4n≠1 ⁄

q<kNL

P n(q) , (77)

such that the ratio of the one-loop and the tree-level trispectrum contributions to the covariance is given by

T 1-loop
g

T tree
g

¥ ‡2

2,≠ , (78)

for k ≥ kNL. The minus sign in our notation for ‡2
n,≠ indicates that momenta which P n(k) is integrated over are

smaller than some scale, which we chose to be kNL.
The existence of a new parameter that controls the loop expansion is indeed surprising, but it is the consequence of

specific momentum configuration of the trispectrum that contributes to the covariance matrix. If all momenta in an
n-point function are di�erent, these parameters never appear. Importantly, ‡2

2,≠ can be very large, even when the
variance of the density field is small. To see this explicitly, let us consider a power-law universe with the IR cuto�
kú, which can be given by the size of the survey or can mimic the equality scale in a �CDM-like universe. In this
simplified setup, the power spectrum is given by

P (k) = 2fi2(3 ≠ n)
k3

NL

3
k

kNL

4≠n

◊(k ≠ kú) , with 3/2 < n < 3 . (79)

Note that the slope of the power spectrum in the �CDM cosmology at the nonlinear scale is approximately n ¥ 2,
which is in the range we consider. The variance of the density field is given by

�2(k) = 2fi2(3 ≠ n)
k3

NL

1
2fi2

⁄ k

kmin

dq q2

3
q

kNL

4≠n

¥

3
k

kNL

43≠n

, (80)

where for 3/2 < n < 3 we have neglected the lower bound of the integral. As usual, the power spectrum is normalized
such that �2(kNL) = 1. Also, the variance is smaller than 1 on perturbative scales and it is growing with k for our
choice of n. We can now explicitly compute ‡2

2,≠ and find

‡2

2,≠ = (3 ≠ n)2

2n ≠ 3

3
kú

kNL

43≠2n

. (81)

Note that for our choice 3/2 < n < 3 the integral in ‡2
2,≠ is dominated in the infrared and in this estimate we neglected

the upper bound. For n ¥ 2 we have ‡2
2,≠ ¥ kNL/kú, which can be much larger than 1. This large parameter can

significantly modify the variance of the estimator for A. Following Eq. (74) we have

var(Ẽ) = 2
Npix

3
1 + Npix

2V

⁄

q
P 2(q)

4
= 2

Npix

3
1 + fi2

Npix

V k3

NL
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4
. (82)

17

where Tg is connected 4-point function of the data (in the following, we will drop the hat on correlation functions of
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where �2(kmax) is the variance of the density field at kmax used in the analysis. As one may expect, corrections to the
linear theory error bars are small at leading order in perturbation theory. However, going to the one-loop trispectrum in
var(Ẽ) something unexpected happens. Due to the particular momentum configuration there are one-loop contributions
that schematically look like
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This is a well-known result that can be explicitly derived in perturbation theory [2, 90–93] and holds even in the
nonlinear regime if one uses nonlinear responses to compute the covariance matrix [93, 110]. Importantly, such
contributions to the covariance matrix are not controlled by the variance of the density field as one may naively expect.
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smaller than some scale, which we chose to be kNL.
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var( ) can be smallδ

var( ) can in principle be very largeδ2



Conclusions
Field level analysis based on PT is equivalent to P+B+…

This is based on several assumptions, which are mildly 
violated even in LCDM

Are there more exceptions?

What does this imply for alternative summary statistics?

Are these arguments still valid for  not too small?Δ2(k)
Are there new large parameters related to new physics?


