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V(ϕ) = M2ϕ2

T0 = 2.725 K = 2.35 × 10−13 GeV
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One very appealing property of inflation is that 
a tiny amount of spatial dependence is 
inevitable. 
These tiny, primordial variations in the space-
time, which are naturally present in inflation, 
provide the initial inhomogeneities needed to 
explain the beginnings of the structures that are 
observed today. Their origin in the theory lies 
in the quantum behavior of both the field and 
the space-time.
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Note that the Fourier transformation is defined with respect to the 
comoving coordinates. So,  is the comoving wavenumberk



Space-time itself fluctuates 
quantum mechanically 
about a background that is 
expanding at an 
accelerating rate. 



This extreme expansion
spreads the fluctuations, which 
begin with a tiny spatial 
extent, throughout a vast 
region of the universe, where 
they eventually become small 
classical fluctuations in the 
space-time curvature—or 
equivalently, small spatial 
variations in the strength of 
gravity. 

The physical wavelength is λ(t) =
2πa(t)

k



δρ/ρ

Since everything in the universe 
feels the influence of gravity, 
these fluctuations in the 
gravitational field
are transferred to the matter 
and radiation fields, creating 
slightly over-dense and under-
dense regions. The resulting 
matter fluctuations then become 
the ‘initial conditions’ that start 
the process of collapse which 
forms the stars and galaxies of 
later epochs.



δρ/ρ

To test whether this picture 
is correct, it is necessary to 
describe very accurately the
properties of the pattern 
generated by inflation for the 
original, primordial 
fluctuations in space-time 
which can then be compared 
with what is inferred from 
observations.
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“Lower” mass gap:
“Upper” mass gap:

  

≈ [2.2 ÷ 6] M⊙
≳ 50 M⊙

Gravitational-wave detections 
made by the LIGO-Virgo-KAGRA (LVK) 
Collaborations to date, arXiv:2111.03634

GWTC-3 dataset contains 69 binary 
BH events and 7
potential NS-involving binaries 
(which are characterised
by at least one object with mass below 3 
solar mass)

Only GW170817 is confidently regarded as a NS 
binary due to the observation of the electromagnetic 
counterpart 
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Furthermore, the PBH merger rate distribution shown
in Fig. 8 has significant support in the subsolar range.
This contribution is only bounded from above by the non
observation of subsolar events in the GWTC-3 catalog.
As previously discussed, this interesting property is due to
the inevitable broadness of the PBH mass function below
the QCD peak induced by the critical collapse. Since the
PBH distribution has support in the solar mass range,
as it provides a competitive explanation for GW190814
and a marginal contribution to the otherwise NS binaries
(although the PBH merger rate is 1-2 orders of magnitudes
smaller than for the NS distribution), then in our ab-initio
PBH model it is inevitable to have support for subsolar
mergers. This is not the case for the NS phenomenological
model, whose mass distribution abruptly drops in the
subsolar range.

Finally, note that while the ABH and NS distributions
shown in Fig. 8 have an upper and lower value given
by their corresponding 90% credible interval, the PBH
distribution has no lower value since the posterior of
fPBH is also compatible with zero (see Appendix A). This
property is natural in our analysis, since the ABH and
NS distributions are phenomenological models built to
reproduce most of the features of the data. 5 Therefore, as
previously remarked, our analysis is not meant to search
for a PBH subpopolation but rather to place an upper
limit on the PBH abundance compatible with the data
(see next section).

Nonetheless, it is interesting that there exist events with
a significant likelihood to be interpreted as PBH binaries
by our inference, as shown in Table III. In general, the
most interesting events are those being either in the light
or heavy portions of the catalog, close to either mass gaps,
or being characterised by a small mass ratio. While many
events have O(%) probability, for GW190924_021846,
GW190814, GW190412, and GW190521 the probability
is approximately 40%, 29%, 25%, and 7% respectively.
We stress that we are comparing an ab-initio PBH model
with phenomenological LVK fits tailored to match current
data without any astrophysical input. In particular, the
LVK fits do not enforce any mass gap in the ABH/NS
distribution, so it is possible that events like GW190814
and GW190924_021846 (with masses m2 ¥ 2.7M§ and
m2 ¥ 5M§, which respectively lie squarely in the lower-
mass gap and on its upper end) are well fitted by the ABH
or NS phenomenological models. Thus, it is interesting
and a priori not granted that precisely these events have a

5 For example, the phenomenological ABH distribution can accom-
modate the upper mass-gap event GW190521 [174], even if it is
challenging to explain the latter in standard astrophysical scenar-
ios due to the pulsational pair supernova instability preventing
the formation of binaries with masses above the (uncertain) limit
t 50M§ [175–187]. One possibility widely investigated in the
literature is the interpretation of such event as a second genera-
tion merger in globular clusters or galactic nuclei [188–194], even
though it may be challenging to explain the observed rate of this
event (see also [45, 58]).

TABLE III: GWTC-3 events with highest PBH likelihood
listed in chronological order. The two groups refer to
m2 > 3M§ (top) or m2 < 3M§ (bottom). We also report
the measured masses of each event.

GW event PBH prob. [%] m1[M§] m2[M§]

GW151012 1.2 23.2+14.9
≠5.5 13.6+4.1

≠4.8

GW190412 25.4 30.1+4.7
≠5.1 8.3+1.6

≠0.9

GW190512_180714 1.6 23.3+5.3
≠5.8 12.6+3.6

≠2.5

GW190519_153544 1.5 66.0+10.7
≠12.0 40.5+11.0

≠11.1

GW190521 7.2 95.3+28.7
≠18.9 69.0+22.7

≠23.1

GW190602_175927 2.7 69.1+15.7
≠13.0 47.8+14.3

≠17.4

GW190701_203306 1.4 53.9+11.8
≠8.0 40.8+8.7

≠12.0

GW190706_222641 1.3 67.0+14.6
≠16.2 38.2+14.6

≠13.3

GW190828_065509 2.8 24.1+7.0
≠7.2 10.2+3.6

≠2.1

GW190924_021846 40.3 8.9+7.0
≠2.0 5.0+1.4

≠1.9

GW191109_010717 2.9 65+11
≠11 47+15

≠13

GW191129_134029 1.2 10.7+4.1
≠2.1 6.7+1.5

≠1.7

GW190425 2.8 2.0+0.6
≠0.3 1.4+0.3

≠0.3

GW190426_152155 1.2 5.7+3.9
≠2.3 1.5+0.8

≠0.5

GW190814 29.1 23.2+1.1
≠1.0 2.59+0.08

≠0.09

GW190917_114630 3.0 9.3+3.4
≠4.4 2.1+1.5

≠0.5

GW200105_162426 3.6 8.9+1.2
≠1.5 1.9+0.3

≠0.2

GW200115_042309 1.2 5.9+2.0
≠2.5 1.44+0.85

≠0.29

sizeable probability to be interpreted as primordial. This
is due to the fact that they nevertheless lie in a relatively
scarcely populated mass range, so the phenomenological
distributions should stretch significantly to accommodate
them, possibly reducing their ability to fit the many other
heavier events in the catalog. Overall, these results may
indicate that such events, regardless of their primordial
interpretation, may not fit consistently within the pop-
ulation described by the LVK reference model and may
belong to distinct populations of NS and BH binaries.

It is also interesting that the light events (m1,2 . 3M§)
that are interpreted as standard NS binaries by the LVK
analysis (e.g., GW190425) have only O(%) likelihood to
be interpreted as PBHs. This is due to the fact that, even
if the PBH distribution modulated by the QCD phase
peaks at m1 ¥ M§, its magnitude is anyway much smaller
than the inferred value of the NS distribution. This is
most likely due to the combination of the critical collapse
tail (which does not allow for a sharp drop of the mass
function below the solar mass) and the constraint from
the absence of sub-solar detections in GWTC-3.

To conclude this section, we report the Bayes factors
comparing the ABH+NS model to the one which includes
a PBH subpopulation, found to be

log10 B
ABH+NS+PBH,QCD
ABH+NS = 0.9 , (63)
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the QCD peak induced by the critical collapse. Since the
PBH distribution has support in the solar mass range,
as it provides a competitive explanation for GW190814
and a marginal contribution to the otherwise NS binaries
(although the PBH merger rate is 1-2 orders of magnitudes
smaller than for the NS distribution), then in our ab-initio
PBH model it is inevitable to have support for subsolar
mergers. This is not the case for the NS phenomenological
model, whose mass distribution abruptly drops in the
subsolar range.

Finally, note that while the ABH and NS distributions
shown in Fig. 8 have an upper and lower value given
by their corresponding 90% credible interval, the PBH
distribution has no lower value since the posterior of
fPBH is also compatible with zero (see Appendix A). This
property is natural in our analysis, since the ABH and
NS distributions are phenomenological models built to
reproduce most of the features of the data. 5 Therefore, as
previously remarked, our analysis is not meant to search
for a PBH subpopolation but rather to place an upper
limit on the PBH abundance compatible with the data
(see next section).

Nonetheless, it is interesting that there exist events with
a significant likelihood to be interpreted as PBH binaries
by our inference, as shown in Table III. In general, the
most interesting events are those being either in the light
or heavy portions of the catalog, close to either mass gaps,
or being characterised by a small mass ratio. While many
events have O(%) probability, for GW190924_021846,
GW190814, GW190412, and GW190521 the probability
is approximately 40%, 29%, 25%, and 7% respectively.
We stress that we are comparing an ab-initio PBH model
with phenomenological LVK fits tailored to match current
data without any astrophysical input. In particular, the
LVK fits do not enforce any mass gap in the ABH/NS
distribution, so it is possible that events like GW190814
and GW190924_021846 (with masses m2 ¥ 2.7M§ and
m2 ¥ 5M§, which respectively lie squarely in the lower-
mass gap and on its upper end) are well fitted by the ABH
or NS phenomenological models. Thus, it is interesting
and a priori not granted that precisely these events have a

5 For example, the phenomenological ABH distribution can accom-
modate the upper mass-gap event GW190521 [174], even if it is
challenging to explain the latter in standard astrophysical scenar-
ios due to the pulsational pair supernova instability preventing
the formation of binaries with masses above the (uncertain) limit
t 50M§ [175–187]. One possibility widely investigated in the
literature is the interpretation of such event as a second genera-
tion merger in globular clusters or galactic nuclei [188–194], even
though it may be challenging to explain the observed rate of this
event (see also [45, 58]).

TABLE III: GWTC-3 events with highest PBH likelihood
listed in chronological order. The two groups refer to
m2 > 3M§ (top) or m2 < 3M§ (bottom). We also report
the measured masses of each event.

GW event PBH prob. [%] m1[M§] m2[M§]

GW151012 1.2 23.2+14.9
≠5.5 13.6+4.1

≠4.8

GW190412 25.4 30.1+4.7
≠5.1 8.3+1.6

≠0.9

GW190512_180714 1.6 23.3+5.3
≠5.8 12.6+3.6

≠2.5

GW190519_153544 1.5 66.0+10.7
≠12.0 40.5+11.0

≠11.1

GW190521 7.2 95.3+28.7
≠18.9 69.0+22.7

≠23.1

GW190602_175927 2.7 69.1+15.7
≠13.0 47.8+14.3

≠17.4

GW190701_203306 1.4 53.9+11.8
≠8.0 40.8+8.7

≠12.0

GW190706_222641 1.3 67.0+14.6
≠16.2 38.2+14.6

≠13.3

GW190828_065509 2.8 24.1+7.0
≠7.2 10.2+3.6

≠2.1

GW190924_021846 40.3 8.9+7.0
≠2.0 5.0+1.4

≠1.9

GW191109_010717 2.9 65+11
≠11 47+15

≠13

GW191129_134029 1.2 10.7+4.1
≠2.1 6.7+1.5

≠1.7

GW190425 2.8 2.0+0.6
≠0.3 1.4+0.3

≠0.3

GW190426_152155 1.2 5.7+3.9
≠2.3 1.5+0.8

≠0.5

GW190814 29.1 23.2+1.1
≠1.0 2.59+0.08

≠0.09

GW190917_114630 3.0 9.3+3.4
≠4.4 2.1+1.5

≠0.5

GW200105_162426 3.6 8.9+1.2
≠1.5 1.9+0.3

≠0.2

GW200115_042309 1.2 5.9+2.0
≠2.5 1.44+0.85

≠0.29

sizeable probability to be interpreted as primordial. This
is due to the fact that they nevertheless lie in a relatively
scarcely populated mass range, so the phenomenological
distributions should stretch significantly to accommodate
them, possibly reducing their ability to fit the many other
heavier events in the catalog. Overall, these results may
indicate that such events, regardless of their primordial
interpretation, may not fit consistently within the pop-
ulation described by the LVK reference model and may
belong to distinct populations of NS and BH binaries.

It is also interesting that the light events (m1,2 . 3M§)
that are interpreted as standard NS binaries by the LVK
analysis (e.g., GW190425) have only O(%) likelihood to
be interpreted as PBHs. This is due to the fact that, even
if the PBH distribution modulated by the QCD phase
peaks at m1 ¥ M§, its magnitude is anyway much smaller
than the inferred value of the NS distribution. This is
most likely due to the combination of the critical collapse
tail (which does not allow for a sharp drop of the mass
function below the solar mass) and the constraint from
the absence of sub-solar detections in GWTC-3.

To conclude this section, we report the Bayes factors
comparing the ABH+NS model to the one which includes
a PBH subpopulation, found to be
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Finally, note that while the ABH and NS distributions
shown in Fig. 8 have an upper and lower value given
by their corresponding 90% credible interval, the PBH
distribution has no lower value since the posterior of
fPBH is also compatible with zero (see Appendix A). This
property is natural in our analysis, since the ABH and
NS distributions are phenomenological models built to
reproduce most of the features of the data. 5 Therefore, as
previously remarked, our analysis is not meant to search
for a PBH subpopolation but rather to place an upper
limit on the PBH abundance compatible with the data
(see next section).

Nonetheless, it is interesting that there exist events with
a significant likelihood to be interpreted as PBH binaries
by our inference, as shown in Table III. In general, the
most interesting events are those being either in the light
or heavy portions of the catalog, close to either mass gaps,
or being characterised by a small mass ratio. While many
events have O(%) probability, for GW190924_021846,
GW190814, GW190412, and GW190521 the probability
is approximately 40%, 29%, 25%, and 7% respectively.
We stress that we are comparing an ab-initio PBH model
with phenomenological LVK fits tailored to match current
data without any astrophysical input. In particular, the
LVK fits do not enforce any mass gap in the ABH/NS
distribution, so it is possible that events like GW190814
and GW190924_021846 (with masses m2 ¥ 2.7M§ and
m2 ¥ 5M§, which respectively lie squarely in the lower-
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or NS phenomenological models. Thus, it is interesting
and a priori not granted that precisely these events have a
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that are interpreted as standard NS binaries by the LVK
analysis (e.g., GW190425) have only O(%) likelihood to
be interpreted as PBHs. This is due to the fact that, even
if the PBH distribution modulated by the QCD phase
peaks at m1 ¥ M§, its magnitude is anyway much smaller
than the inferred value of the NS distribution. This is
most likely due to the combination of the critical collapse
tail (which does not allow for a sharp drop of the mass
function below the solar mass) and the constraint from
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Furthermore, the PBH merger rate distribution shown
in Fig. 8 has significant support in the subsolar range.
This contribution is only bounded from above by the non
observation of subsolar events in the GWTC-3 catalog.
As previously discussed, this interesting property is due to
the inevitable broadness of the PBH mass function below
the QCD peak induced by the critical collapse. Since the
PBH distribution has support in the solar mass range,
as it provides a competitive explanation for GW190814
and a marginal contribution to the otherwise NS binaries
(although the PBH merger rate is 1-2 orders of magnitudes
smaller than for the NS distribution), then in our ab-initio
PBH model it is inevitable to have support for subsolar
mergers. This is not the case for the NS phenomenological
model, whose mass distribution abruptly drops in the
subsolar range.

Finally, note that while the ABH and NS distributions
shown in Fig. 8 have an upper and lower value given
by their corresponding 90% credible interval, the PBH
distribution has no lower value since the posterior of
fPBH is also compatible with zero (see Appendix A). This
property is natural in our analysis, since the ABH and
NS distributions are phenomenological models built to
reproduce most of the features of the data. 5 Therefore, as
previously remarked, our analysis is not meant to search
for a PBH subpopolation but rather to place an upper
limit on the PBH abundance compatible with the data
(see next section).

Nonetheless, it is interesting that there exist events with
a significant likelihood to be interpreted as PBH binaries
by our inference, as shown in Table III. In general, the
most interesting events are those being either in the light
or heavy portions of the catalog, close to either mass gaps,
or being characterised by a small mass ratio. While many
events have O(%) probability, for GW190924_021846,
GW190814, GW190412, and GW190521 the probability
is approximately 40%, 29%, 25%, and 7% respectively.
We stress that we are comparing an ab-initio PBH model
with phenomenological LVK fits tailored to match current
data without any astrophysical input. In particular, the
LVK fits do not enforce any mass gap in the ABH/NS
distribution, so it is possible that events like GW190814
and GW190924_021846 (with masses m2 ¥ 2.7M§ and
m2 ¥ 5M§, which respectively lie squarely in the lower-
mass gap and on its upper end) are well fitted by the ABH
or NS phenomenological models. Thus, it is interesting
and a priori not granted that precisely these events have a

5 For example, the phenomenological ABH distribution can accom-
modate the upper mass-gap event GW190521 [174], even if it is
challenging to explain the latter in standard astrophysical scenar-
ios due to the pulsational pair supernova instability preventing
the formation of binaries with masses above the (uncertain) limit
t 50M§ [175–187]. One possibility widely investigated in the
literature is the interpretation of such event as a second genera-
tion merger in globular clusters or galactic nuclei [188–194], even
though it may be challenging to explain the observed rate of this
event (see also [45, 58]).
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that are interpreted as standard NS binaries by the LVK
analysis (e.g., GW190425) have only O(%) likelihood to
be interpreted as PBHs. This is due to the fact that, even
if the PBH distribution modulated by the QCD phase
peaks at m1 ¥ M§, its magnitude is anyway much smaller
than the inferred value of the NS distribution. This is
most likely due to the combination of the critical collapse
tail (which does not allow for a sharp drop of the mass
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Furthermore, the PBH merger rate distribution shown
in Fig. 8 has significant support in the subsolar range.
This contribution is only bounded from above by the non
observation of subsolar events in the GWTC-3 catalog.
As previously discussed, this interesting property is due to
the inevitable broadness of the PBH mass function below
the QCD peak induced by the critical collapse. Since the
PBH distribution has support in the solar mass range,
as it provides a competitive explanation for GW190814
and a marginal contribution to the otherwise NS binaries
(although the PBH merger rate is 1-2 orders of magnitudes
smaller than for the NS distribution), then in our ab-initio
PBH model it is inevitable to have support for subsolar
mergers. This is not the case for the NS phenomenological
model, whose mass distribution abruptly drops in the
subsolar range.

Finally, note that while the ABH and NS distributions
shown in Fig. 8 have an upper and lower value given
by their corresponding 90% credible interval, the PBH
distribution has no lower value since the posterior of
fPBH is also compatible with zero (see Appendix A). This
property is natural in our analysis, since the ABH and
NS distributions are phenomenological models built to
reproduce most of the features of the data. 5 Therefore, as
previously remarked, our analysis is not meant to search
for a PBH subpopolation but rather to place an upper
limit on the PBH abundance compatible with the data
(see next section).

Nonetheless, it is interesting that there exist events with
a significant likelihood to be interpreted as PBH binaries
by our inference, as shown in Table III. In general, the
most interesting events are those being either in the light
or heavy portions of the catalog, close to either mass gaps,
or being characterised by a small mass ratio. While many
events have O(%) probability, for GW190924_021846,
GW190814, GW190412, and GW190521 the probability
is approximately 40%, 29%, 25%, and 7% respectively.
We stress that we are comparing an ab-initio PBH model
with phenomenological LVK fits tailored to match current
data without any astrophysical input. In particular, the
LVK fits do not enforce any mass gap in the ABH/NS
distribution, so it is possible that events like GW190814
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m2 ¥ 5M§, which respectively lie squarely in the lower-
mass gap and on its upper end) are well fitted by the ABH
or NS phenomenological models. Thus, it is interesting
and a priori not granted that precisely these events have a

5 For example, the phenomenological ABH distribution can accom-
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though it may be challenging to explain the observed rate of this
event (see also [45, 58]).

TABLE III: GWTC-3 events with highest PBH likelihood
listed in chronological order. The two groups refer to
m2 > 3M§ (top) or m2 < 3M§ (bottom). We also report
the measured masses of each event.

GW event PBH prob. [%] m1[M§] m2[M§]

GW151012 1.2 23.2+14.9
≠5.5 13.6+4.1

≠4.8

GW190412 25.4 30.1+4.7
≠5.1 8.3+1.6

≠0.9

GW190512_180714 1.6 23.3+5.3
≠5.8 12.6+3.6

≠2.5

GW190519_153544 1.5 66.0+10.7
≠12.0 40.5+11.0

≠11.1

GW190521 7.2 95.3+28.7
≠18.9 69.0+22.7

≠23.1

GW190602_175927 2.7 69.1+15.7
≠13.0 47.8+14.3

≠17.4

GW190701_203306 1.4 53.9+11.8
≠8.0 40.8+8.7

≠12.0

GW190706_222641 1.3 67.0+14.6
≠16.2 38.2+14.6

≠13.3

GW190828_065509 2.8 24.1+7.0
≠7.2 10.2+3.6

≠2.1

GW190924_021846 40.3 8.9+7.0
≠2.0 5.0+1.4

≠1.9

GW191109_010717 2.9 65+11
≠11 47+15

≠13

GW191129_134029 1.2 10.7+4.1
≠2.1 6.7+1.5

≠1.7

GW190425 2.8 2.0+0.6
≠0.3 1.4+0.3

≠0.3

GW190426_152155 1.2 5.7+3.9
≠2.3 1.5+0.8

≠0.5

GW190814 29.1 23.2+1.1
≠1.0 2.59+0.08

≠0.09

GW190917_114630 3.0 9.3+3.4
≠4.4 2.1+1.5

≠0.5

GW200105_162426 3.6 8.9+1.2
≠1.5 1.9+0.3

≠0.2

GW200115_042309 1.2 5.9+2.0
≠2.5 1.44+0.85

≠0.29

sizeable probability to be interpreted as primordial. This
is due to the fact that they nevertheless lie in a relatively
scarcely populated mass range, so the phenomenological
distributions should stretch significantly to accommodate
them, possibly reducing their ability to fit the many other
heavier events in the catalog. Overall, these results may
indicate that such events, regardless of their primordial
interpretation, may not fit consistently within the pop-
ulation described by the LVK reference model and may
belong to distinct populations of NS and BH binaries.

It is also interesting that the light events (m1,2 . 3M§)
that are interpreted as standard NS binaries by the LVK
analysis (e.g., GW190425) have only O(%) likelihood to
be interpreted as PBHs. This is due to the fact that, even
if the PBH distribution modulated by the QCD phase
peaks at m1 ¥ M§, its magnitude is anyway much smaller
than the inferred value of the NS distribution. This is
most likely due to the combination of the critical collapse
tail (which does not allow for a sharp drop of the mass
function below the solar mass) and the constraint from
the absence of sub-solar detections in GWTC-3.

To conclude this section, we report the Bayes factors
comparing the ABH+NS model to the one which includes
a PBH subpopulation, found to be

log10 B
ABH+NS+PBH,QCD
ABH+NS = 0.9 , (63)

17

Furthermore, the PBH merger rate distribution shown
in Fig. 8 has significant support in the subsolar range.
This contribution is only bounded from above by the non
observation of subsolar events in the GWTC-3 catalog.
As previously discussed, this interesting property is due to
the inevitable broadness of the PBH mass function below
the QCD peak induced by the critical collapse. Since the
PBH distribution has support in the solar mass range,
as it provides a competitive explanation for GW190814
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or NS phenomenological models. Thus, it is interesting
and a priori not granted that precisely these events have a

5 For example, the phenomenological ABH distribution can accom-
modate the upper mass-gap event GW190521 [174], even if it is
challenging to explain the latter in standard astrophysical scenar-
ios due to the pulsational pair supernova instability preventing
the formation of binaries with masses above the (uncertain) limit
t 50M§ [175–187]. One possibility widely investigated in the
literature is the interpretation of such event as a second genera-
tion merger in globular clusters or galactic nuclei [188–194], even
though it may be challenging to explain the observed rate of this
event (see also [45, 58]).

TABLE III: GWTC-3 events with highest PBH likelihood
listed in chronological order. The two groups refer to
m2 > 3M§ (top) or m2 < 3M§ (bottom). We also report
the measured masses of each event.

GW event PBH prob. [%] m1[M§] m2[M§]

GW151012 1.2 23.2+14.9
≠5.5 13.6+4.1

≠4.8

GW190412 25.4 30.1+4.7
≠5.1 8.3+1.6

≠0.9

GW190512_180714 1.6 23.3+5.3
≠5.8 12.6+3.6

≠2.5

GW190519_153544 1.5 66.0+10.7
≠12.0 40.5+11.0

≠11.1

GW190521 7.2 95.3+28.7
≠18.9 69.0+22.7

≠23.1

GW190602_175927 2.7 69.1+15.7
≠13.0 47.8+14.3

≠17.4

GW190701_203306 1.4 53.9+11.8
≠8.0 40.8+8.7

≠12.0

GW190706_222641 1.3 67.0+14.6
≠16.2 38.2+14.6

≠13.3

GW190828_065509 2.8 24.1+7.0
≠7.2 10.2+3.6

≠2.1

GW190924_021846 40.3 8.9+7.0
≠2.0 5.0+1.4

≠1.9

GW191109_010717 2.9 65+11
≠11 47+15

≠13

GW191129_134029 1.2 10.7+4.1
≠2.1 6.7+1.5

≠1.7

GW190425 2.8 2.0+0.6
≠0.3 1.4+0.3

≠0.3

GW190426_152155 1.2 5.7+3.9
≠2.3 1.5+0.8

≠0.5

GW190814 29.1 23.2+1.1
≠1.0 2.59+0.08

≠0.09

GW190917_114630 3.0 9.3+3.4
≠4.4 2.1+1.5

≠0.5

GW200105_162426 3.6 8.9+1.2
≠1.5 1.9+0.3

≠0.2

GW200115_042309 1.2 5.9+2.0
≠2.5 1.44+0.85

≠0.29

sizeable probability to be interpreted as primordial. This
is due to the fact that they nevertheless lie in a relatively
scarcely populated mass range, so the phenomenological
distributions should stretch significantly to accommodate
them, possibly reducing their ability to fit the many other
heavier events in the catalog. Overall, these results may
indicate that such events, regardless of their primordial
interpretation, may not fit consistently within the pop-
ulation described by the LVK reference model and may
belong to distinct populations of NS and BH binaries.

It is also interesting that the light events (m1,2 . 3M§)
that are interpreted as standard NS binaries by the LVK
analysis (e.g., GW190425) have only O(%) likelihood to
be interpreted as PBHs. This is due to the fact that, even
if the PBH distribution modulated by the QCD phase
peaks at m1 ¥ M§, its magnitude is anyway much smaller
than the inferred value of the NS distribution. This is
most likely due to the combination of the critical collapse
tail (which does not allow for a sharp drop of the mass
function below the solar mass) and the constraint from
the absence of sub-solar detections in GWTC-3.

To conclude this section, we report the Bayes factors
comparing the ABH+NS model to the one which includes
a PBH subpopulation, found to be

log10 B
ABH+NS+PBH,QCD
ABH+NS = 0.9 , (63)
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FIG. 7: BH merger rates as a function of the primary mass (left panel) or of the mass ratio (right panel) as inferred
from a subset of the GWTC-3 catalog (m2 > 3M§) and assuming only a single binary BH population, either described
by the ABH phenomenological model (red), the PBH model assuming a lognormal mass distribution (blue), or the
ab-initio PBH model with a mass distribution fixed by the curvature spectrum in Eq. (10) and modulated by the QCD
phase (green).
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FIG. 8: Merger rate distribution as a function of the primary mass for the GWTC-3 population inference and including
contribution from three channels: ABH phenomenological model, NS phenomenological model, and ab-initio PBH
model modulated by the QCD phase. Events in the lower mass gap (e.g., GW190814) are more naturally interpreted
as PBHs rather than being included in the ABH or NS phenomenological channels. This is where the black line mostly
deviates from the median distribution of the NS/BBH astrophysical channels. Each black ticks at the top of the frame
indicate the median values for the primary mass of each GWTC-3 event. In red, we highlight those with nonnegligible
probability (i.e. > 5%) of being of primordial origin in our analysis, see Table III.

range, from subsolar (m1 . M§) to intermediate mass
(m1 & 100M§), with a large support also in the lower
mass gap (3 . m1/M§ . 5) which is instead avoided
by the ABH and NS distributions. Note that this last
property is nontrivial, since the ABH and NS models
are phenomenological and not informed by astrophysical
priors, so a priori there is no constraint preventing the
best-fit ABH and NS distributions from having support
in the lower mass gap.

The support of the PBH distribution at high masses
is due both to heavy events potentially interpretable as
PBHs and also (as in the previous case of single-population
analyses) to the fact that if the secondary is interpreted
as a PBH then automatically also the heavier primary
is primordial, so the low-mass (Æ 3m§) and high-mass
ranges (Ø 3m§) are intertwined. This is not the case for
the ABH/NS models, since they allow for mixed BH-NS
binaries following independent distributions.

Intriguingly, our ab-initio PBH distribution allows us to
make some falsifiable predictions: if some of the GWTC-3
events are primordial, then the merger rates
in the subsolar mass range and in the lower mass gap
are high enough to be detectable by future LVK runs. In
particular, the absence of subsolar mergers in O5 would
automatically exclude the primordial origin of the light
events within GWTC-3.
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I interpret this tension not as a problem but 
as an opportunity: it means that we need to 
have full control over how we calculate the 
abundance of PBHs to ensure that the 
predicted signal of gravitational waves has 
the right amplitude.



Uncertainties in the theoretical computation of the PBH abundance arise from various aspects related to the early 
universe's physics, inflationary models, and the dynamics of structure formation. Addressing and understanding these 
uncertainties are crucial for accurate predictions and comparisons with observational data.

Equation of State during Radiation and Matter Domination:

• The behavior of the cosmic fluid (radiation or matter) during different epochs 
influences the collapse of overdense regions into black holes. Variations in the 
equation of state can affect the PBH abundance.

Critical Overdensity for Collapse:

• The critical threshold for collapse, which determines when an overdense 
region collapses to form a black hole, can be subject to uncertainties, 
particularly if non-Gaussian features in the primordial perturbations are 
considered.

Numerical Simulations:

• Numerical simulations used to study PBH formation are subject to limitations 
and assumptions, and uncertainties can arise from the numerical methods 
employed.

Non-Gaussianity:

• Deviations from Gaussian statistics in the primordial perturbations can 
introduce additional complexities in predicting the PBH abundance.



Do theoretical arguments exist 
against PBHs?
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Finite naturalness criterium: the Higgs 
mass is naturally small as long as there 
are no heavier particles that give large 
finite contributions to the Higgs mass.



Let's consider the case of a heavy mass scale not coupled to the Higgs. 
Is there a finite naturalness bound?



Let's consider the case of a heavy mass scale not coupled to the Higgs. 
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Let's consider the case of a heavy mass scale not coupled to the Higgs. 
Is there a finite naturalness bound?

δm2
H ∼

y2
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MΨ ≲ 1014 GeV



Let's consider the case of a heavy mass scale not coupled to the Higgs. 
Is there a finite naturalness bound?

𝒮EH+H = ∫ d4x −g[( 1
2

M̄2
Pl + ξH†H) R + (DμH)†(DμH) − V(H†H)]

MΨ ≲ 1010 ξ−1/4 GeV

ξ



Let's consider the case of a heavy mass scale not coupled to the Higgs. 
Is there a finite naturalness bound?

𝒮EH+H = ∫ d4x −g[( 1
2

M̄2
Pl + ξH†H) R + (DμH)†(DμH) − V(H†H)]

MΨ ≲ 1010 ξ−1/4 GeV

●

●

●

●

The criterion of finite 
naturalness disfavors large-
field inflationary models 
with super-Planckian field 
excursions.



Do theoretical arguments exist 
against PBHs?
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FIG. 3. Left panel: Tree-level power spectrum in the minimal dynamics of section II B. The numerical values of the other
parameters are ⌘II = 3.5, ⌘III = 0 and Nend �Nin = 2.5. In our parametrization, we go beyond the instantaneous transition
approximation and we explore di↵erent values of �N . The vertical double-arrow indicates the growth of the power spectrum
given by the näıve scaling �P = (kend/kin)

2⌘II = e
2⌘II�NUSR . This scaling captures well the amplitude of the transition from

the initial to the final SR phase but it does not give a reliable estimate of the peak amplitude of the power spectrum, which
can easily be one order of magnitude larger. Right panel: Time evolution of two representative modes with k̄ = 1 and
k̄ = e

�NUSR for �N 2 [0.1÷ 0.5] (from darker to lighter colors, respectively). The black lines represent the limit �N ! 0.

the peak, the power spectrum of the short modes decays approximately as P(k̄) ⇠ k̄2⌘III . After the peak, therefore,
the power spectrum becomes approximately scale invariant only if we take ⌘III ⇡ 0; however, in such case ✏ remains
anchored to the tiny value reached during the USR phase and inflation never ends.

In ref. [35], the loop integration is restricted to the interval of modes k̄ 2 [k̄in, k̄end] where k̄in = 1 and
k̄end = e�NUSR(Hend/Hin) ' e�NUSR with �NUSR ⌘ Nend � Nin. This interval of modes is limited by the two
vertical dashed lines in the left panel of fig. 3. In ref. [35], limiting the integration to the range k̄ 2 [k̄in, k̄end] is
justified by the fact that the power spectrum of short modes peaks in this window of modes.

For future reference, let us stress one more important point. In the left panel of fig. 3 we indicate the growth of
the power spectrum given by the scaling �P = (kend/kin)2⌘II . This result immediately follows from the application
of the SR formula P(k) = H2/8⇡2✏ if one accounts for the exponential decay ✏ ⇠ e�2⌘IIN during USR and
converts N into k by means of the horizon-crossing condition k = aH. Therefore, not surprisingly, the scaling
�P = (kend/kin)2⌘II captures well the growth of the power spectrum if one directly jumps from the initial to the
final SR phase. However, as shown in the left panel of fig. 3, the above estimate does not accurately describe the
amplitude of the power spectrum at the position of its peak; the latter can easily be one order of magnitude larger
than what suggested by �P = (kend/kin)2⌘II . This features has important consequences when estimating the PBH
abundance, which rather sensitive to the spectral amplitude. We will come back to this point in the next section.

Finally, it is possible to check numerically that neglecting the time dependence of the Hubble rate as in eq. (34)
has a negligible impact. In the following, therefore, we shall keep H constant (that is, H = Href does not evolve in
time). Furthermore, if we take H constant and in the limit �N = 0, it is possible to get, for some special values of
⌘II and ⌘III, a complete analytical description of the SR/USR/SR dynamics [12, 52].

C. The cubic action

At the cubic order in the fluctuations, the action is

S3 =

Z
d4x

⇢
✏2a3⇣̇2⇣ + ✏2a⇣(@k⇣)(@

k⇣)� 2✏2a3⇣̇(@k⇣)@
k(@�2⇣̇) +

✏✏̇2
2

a3⇣̇⇣2 � a3✏3

2

⇥
⇣̇2⇣ � ⇣@k@l(@

�2⇣̇)@k@l(@�2⇣̇)
⇤

+


d

dt

⇣
✏a3⇣̇

⌘
� ✏a@k@

k⇣

�
✏2
2
⇣2 +

2

H
⇣̇⇣ � 1

2a2H2
(@k⇣)(@

k⇣) +
1

2a2H2
@�2@k@l(@

k⇣@l⇣)

+
✏

H
(@k⇣)@

k(@�2⇣̇)� ✏

H
@�2@k@l@

k⇣@l(@�2⇣̇)

��
. (37)
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II. SET-UP OF THE COMPUTATION USING THE “IN-IN” FORMALISM

A. Conventions

First, we set our conventions. We set the reduced Planck mass to one; t is the cosmic time (with ˙⌘ d/dt) and
⌧ the conformal time (with 0 ⌘ d/d⌧) with dt/d⌧ = a being a the scale factor of the flat Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric ds2 = dt2�a2(t)d~x2, with ~x comoving coordinates. The Hubble rate is H ⌘ ȧ/a.
The e-fold time N is defined by dN = Hdt from which we also have dN/d⌧ = aH. The Hubble-flow parameters ✏i
(for i > 1) are defined by the recursive relation

✏i ⌘
✏̇i�1

H✏i�1

, with: ✏0 ⌘ 1

H
. (2)

As customary, we simply indicate as ✏ the first Hubble parameter, ✏ ⌘ ✏1 = �Ḣ/H2. Instead of the second Hubble
parameter ✏2, sometimes it is useful to introduce the Hubble parameter ⌘ defined by1

⌘ ⌘ � Ḧ

2HḢ
= ✏� 1

2

d log ✏

dN
, with: ✏2 = 2✏� 2⌘ . (3)

We consider the theory described by the action

S =

Z
d4x

p
�g


1

2
R(g) +

1

2
gµ⌫(@µ�)(@⌫�)� V (�)

�
. (4)

R(g) is the scalar curvature associated with the space-time whose geometry is described by the metric g with line
element ds2 = gµ⌫dxµdx⌫ . The classical background evolves in the flat FLRW universe and the background value
of the scalar field is a function of time, �(t). We tacitly assume that the scalar potential features an approximate
stationary inflection point so as to trigger the transition SR/USR/SR.

We focus on scalar perturbations. We consider the perturbed metric in the following generic form

ds2 = N2dt2 � hij(N
idt+ dxi)(N jdt+ dxj) , (5)

and choose the gauge in which

N = 1 + �N(~x, t) , N i = �ij@jB(~x, t) , hij = a2(t)e2⇣(~x,t)�ij , ��(~x, t) = 0 . (6)

The field ⇣(~x, t) is the only independent scalar degree of freedom since N and N i are Lagrange multipliers subject
to the momentum and Hamiltonian constraints. It is important to stress that the variable ⇣ as defined in eq. (6)
is constant outside the horizon (more in general, outside the horizon and after the end of possible non-adiabatic
phases) and represents the correct non-linear generalization of the Bardeen variable [45].

At the quadratic order in the fluctuations, the action is

S2 =

Z
d4x ✏ a3


⇣̇2 � (@k⇣)(@k⇣)

a2

�
. (7)

Comoving curvature perturbations are quantized by introducing the free operator

⇣̂(~x, ⌧) =

Z
d3~k

(2⇡)3
⇣̂(~k, ⌧)ei~x·

~k , with: ⇣̂(~k, ⌧) = ⇣k(⌧)a~k + ⇣⇤k(⌧)a
†
�~k

, (8)

and

[a~k, a~k0 ] = [a†~k, a
†
~k0 ] = 0 , [a~k, a

†
~k0 ] = (2⇡)3�(3)(~k � ~k0) , a~k|0i = 0 , (9)

where the last condition defines the vacuum of the free theory |0i. We define the comoving wavenumber k ⌘ |~k|.
The scale factor in the FLRW universe corresponds to a rescaling of the spatial coordinate; consequently, physically
sensible results should be invariant under the rescaling [46]

a ! �a , ~x ! ~x/� , ~k ! �~k , k ! |�|k , with � 2 R . (10)

1
We remark that in ref. [35] the symbol ⌘ refers to the second Hubble parameter ✏2.
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where, for simplicity, we introduce the short-hand notation 1± ⌘ 1(1± i✏). Each order in Ĥint is an interaction
vertex, and carries both a time integral and the space integral (enclosed in the definition of Ĥint) which in Fourier
space enforces momentum conservation.
It is crucial to correctly identify the interaction Hamiltonian. Before proceeding in this direction, let us clarify

our notation. We expand the action in the form

S =

Z
d3~xdt L[⇣(~x, t), ⇣̇(~x, t), @k⇣(~x, t)]| {z }

⌘L[⇣(~x,t)]

=

Z
d3~xdtL2(~x, t)

| {z }
⌘S2

+

Z
d3~xdtL3[⇣(~x, t)]

| {z }
⌘S3

+

Z
d3~xdtL4[⇣(~x, t)]

| {z }
⌘S4

+ . . . , (21)

with S2 defined in eq. (7). We also define (as a function of conformal time)

H(k)
int

(⌧) ⌘
Z

d3~xHk[⇣(~x, ⌧)] =) Ĥ(k)
int

(⌧) ⌘
Z

d3~xHk[⇣̂I(~x, ⌧)] . (22)

At the cubic order, we simply have

H3[⇣(~x, ⌧)] = �L3[⇣(~x, ⌧)] . (23)

We shall construct the relevant cubic interaction Hamiltonian in section IIC. At the quartic order, simply writing
H4 = �L4 does not capture the correct result if the cubic Lagrangian features interactions that depend on the
time derivative of ⇣ since the latter modify the definition of the conjugate momentum.

Using, at the operator level, the notation introduced in eq. (22), we schematically write at the first order in the
Dyson series expansion

h⇣̂(~x1, ⌧)⇣̂(~x2, ⌧)i1st =

h0|⇣̂I(~x1, ⌧)⇣̂I(~x2, ⌧)


� i

Z ⌧

�1�

d⌧ 0Ĥ(4)

int
(⌧ 0)

�
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
i

Z ⌧

�1+

d⌧ 0Ĥ(4)

int
(⌧ 0)

�
⇣̂I(~x1, ⌧)⇣̂I(~x2, ⌧)|0i . (24)

At the first order, therefore, the first non-zero quantum correction involves the quartic Hamiltonian. At the second
order in the Dyson series expansion and considering again terms with up to eight fields in the vacuum expectation
values, we write schematically

h⇣̂(~x1, ⌧)⇣̂(~x2, ⌧)i2nd = h0|⇣̂I(~x1, ⌧)⇣̂I(~x2, ⌧)


�

Z ⌧

�1�

d⌧ 0
Z ⌧ 0

�1�

d⌧ 00Ĥ(3)

int
(⌧ 0)Ĥ(3)

int
(⌧ 00)

�
|0i

+ h0|

�

Z ⌧

�1+

d⌧ 0
Z ⌧ 0

�1+

d⌧ 00Ĥ(3)

int
(⌧ 00)Ĥ(3)

int
(⌧ 0)

�
⇣̂I(~x1, ⌧)⇣̂I(~x2, ⌧)|0i

+ h0|

i

Z ⌧

�1+

d⌧ 0Ĥ(3)

int
(⌧ 0)

�
⇣̂I(~x1, ⌧)⇣̂I(~x2, ⌧)


� i

Z ⌧

�1�

d⌧ 00Ĥ(3)

int
(⌧ 00)

�
|0i . (25)

The vacuum expectation values of interacting-picture fields can be computed using Wick’s theorem. Schematically,
eqs. (24, 25) give rise to the following connected diagrams.

⌧
(~x1, ⌧) (~x2, ⌧)

⌧1

Ĥ(4)

int
(⌧1)

⌧
(~x1, ⌧) (~x2, ⌧)

⌧1

⌧2

Ĥ(3)

int
(⌧1)

Ĥ(3)

int
(⌧2)

⌧
(~x1, ⌧) (~x2, ⌧)

⌧1

⌧2

Ĥ(3)

int
(⌧1)

Ĥ(3)

int
(⌧2)

(26)

From the above classification, we see that, at the same loop order, we have three classes of connected diagrams
that, in principle, should be discussed together. Notice that, contrary to the first two, the last diagram is not of
1-Particle-Irreducible (1PI) type since it consists of a tadpole attached to a two-point propagator.

To proceed further, we need to specify the background dynamics, that shape the time evolution of the Hubble
parameters, and the interaction Hamiltonian, that specifies which terms in the Dyson expansion contribute at a
given perturbative order.
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where, for simplicity, we introduce the short-hand notation 1± ⌘ 1(1± i✏). Each order in Ĥint is an interaction
vertex, and carries both a time integral and the space integral (enclosed in the definition of Ĥint) which in Fourier
space enforces momentum conservation.
It is crucial to correctly identify the interaction Hamiltonian. Before proceeding in this direction, let us clarify
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with S2 defined in eq. (7). We also define (as a function of conformal time)

H(k)
int

(⌧) ⌘
Z

d3~xHk[⇣(~x, ⌧)] =) Ĥ(k)
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At the cubic order, we simply have
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We shall construct the relevant cubic interaction Hamiltonian in section IIC. At the quartic order, simply writing
H4 = �L4 does not capture the correct result if the cubic Lagrangian features interactions that depend on the
time derivative of ⇣ since the latter modify the definition of the conjugate momentum.
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At the first order, therefore, the first non-zero quantum correction involves the quartic Hamiltonian. At the second
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int
(⌧ 00)

�
|0i

+ h0|

�

Z ⌧

�1+

d⌧ 0
Z ⌧ 0

�1+

d⌧ 00Ĥ(3)
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int
(⌧ 0)

�
⇣̂I(~x1, ⌧)⇣̂I(~x2, ⌧)|0i

+ h0|

i

Z ⌧

�1+

d⌧ 0Ĥ(3)
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The vacuum expectation values of interacting-picture fields can be computed using Wick’s theorem. Schematically,
eqs. (24, 25) give rise to the following connected diagrams.
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From the above classification, we see that, at the same loop order, we have three classes of connected diagrams
that, in principle, should be discussed together. Notice that, contrary to the first two, the last diagram is not of
1-Particle-Irreducible (1PI) type since it consists of a tadpole attached to a two-point propagator.

To proceed further, we need to specify the background dynamics, that shape the time evolution of the Hubble
parameters, and the interaction Hamiltonian, that specifies which terms in the Dyson expansion contribute at a
given perturbative order.
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time derivative of ⇣ since the latter modify the definition of the conjugate momentum.
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At the first order, therefore, the first non-zero quantum correction involves the quartic Hamiltonian. At the second
order in the Dyson series expansion and considering again terms with up to eight fields in the vacuum expectation
values, we write schematically
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The vacuum expectation values of interacting-picture fields can be computed using Wick’s theorem. Schematically,
eqs. (24, 25) give rise to the following connected diagrams.
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Ĥ(3)

int
(⌧1)
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From the above classification, we see that, at the same loop order, we have three classes of connected diagrams
that, in principle, should be discussed together. Notice that, contrary to the first two, the last diagram is not of
1-Particle-Irreducible (1PI) type since it consists of a tadpole attached to a two-point propagator.

To proceed further, we need to specify the background dynamics, that shape the time evolution of the Hubble
parameters, and the interaction Hamiltonian, that specifies which terms in the Dyson expansion contribute at a
given perturbative order.
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int

(⌧) ⌘
Z

d3~xHk[⇣̂I(~x, ⌧)] . (22)

At the cubic order, we simply have

H3[⇣(~x, ⌧)] = �L3[⇣(~x, ⌧)] . (23)

We shall construct the relevant cubic interaction Hamiltonian in section IIC. At the quartic order, simply writing
H4 = �L4 does not capture the correct result if the cubic Lagrangian features interactions that depend on the
time derivative of ⇣ since the latter modify the definition of the conjugate momentum.
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At the first order, therefore, the first non-zero quantum correction involves the quartic Hamiltonian. At the second
order in the Dyson series expansion and considering again terms with up to eight fields in the vacuum expectation
values, we write schematically
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d⌧ 0Ĥ(3)

int
(⌧ 0)

�
⇣̂I(~x1, ⌧)⇣̂I(~x2, ⌧)


� i

Z ⌧

�1�

d⌧ 00Ĥ(3)
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The vacuum expectation values of interacting-picture fields can be computed using Wick’s theorem. Schematically,
eqs. (24, 25) give rise to the following connected diagrams.
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From the above classification, we see that, at the same loop order, we have three classes of connected diagrams
that, in principle, should be discussed together. Notice that, contrary to the first two, the last diagram is not of
1-Particle-Irreducible (1PI) type since it consists of a tadpole attached to a two-point propagator.

To proceed further, we need to specify the background dynamics, that shape the time evolution of the Hubble
parameters, and the interaction Hamiltonian, that specifies which terms in the Dyson expansion contribute at a
given perturbative order.
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At the cubic order, we simply have
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We shall construct the relevant cubic interaction Hamiltonian in section IIC. At the quartic order, simply writing
H4 = �L4 does not capture the correct result if the cubic Lagrangian features interactions that depend on the
time derivative of ⇣ since the latter modify the definition of the conjugate momentum.

Using, at the operator level, the notation introduced in eq. (22), we schematically write at the first order in the
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At the first order, therefore, the first non-zero quantum correction involves the quartic Hamiltonian. At the second
order in the Dyson series expansion and considering again terms with up to eight fields in the vacuum expectation
values, we write schematically
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The vacuum expectation values of interacting-picture fields can be computed using Wick’s theorem. Schematically,
eqs. (24, 25) give rise to the following connected diagrams.
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From the above classification, we see that, at the same loop order, we have three classes of connected diagrams
that, in principle, should be discussed together. Notice that, contrary to the first two, the last diagram is not of
1-Particle-Irreducible (1PI) type since it consists of a tadpole attached to a two-point propagator.

To proceed further, we need to specify the background dynamics, that shape the time evolution of the Hubble
parameters, and the interaction Hamiltonian, that specifies which terms in the Dyson expansion contribute at a
given perturbative order.

P(k) ≡ Ptree(k)[1 + ΔP1−loop(k)] ⟹ ΔP1−loop(k)
!
< 1

J.Kristiano and J.Yokoyama,
“Ruling Out Primordial Black Hole Formation From Single-Field Inflation,”
[arXiv:2211.03395[hep-th]].

“We have shown that models realizing appreciable amount of PBH formation with the enhanced 
small-scale spectrum by USR inflaton dynamics inevitably induces nonperturbative coupling to the 
power spectrum on CMB scale. We therefore conclude that PBH formation from cosmological 
perturbation theory single-field inflation with an USR dynamics is ruled out.”
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FIG. 12. Illustrative schematic of the correction induced on the two-point correlator of long modes by a loop of short modes.
On the right side, we plot the prototypical tree-level power spectrum of curvature perturbations as a function of the comoving
wavenumber k in the presence of SR/USR/SR dynamics (with ⌘III = 0 in the language of the parametrization given in
section IIB). The power spectrum features a strong violation of scale invariance at small scales which is needed in order
to produce a sizable abundance of PBHs. For illustration, we plot the region excluded by CMB anisotropy measurements,
ref. [86], the FIRAS bound on CMB spectral distortions, ref. [87, 88] and the bound obtained from Lyman-↵ forest data [89].
If P(k) & 10�2, the abundance of PBHs overcloses the Universe. The plot is rotated in such a way as to share the same
y-axis with the left part of the figure. On the left side, we schematically plot the evolution of the comoving Hubble horizon
RH = 1/aH during inflation. Observable CMB modes (horizontal green band) cross the Hubble horizon earlier (bottom-end
of the figure) and, at the tree level, their correlation remains frozen from this time on. At a much later time, the dynamics
experience a phase of USR. Modes that cross the horizon during the USR phase have their tree-level power spectrum greatly
enhanced and the latter strongly violates scale invariance. Loop of such short modes may induce a sizable correction to the
tree-level correlation of long modes, cf. eq. (109).

some relevance. Furthermore, all interactions with spatial derivatives have been so far discarded. However, the
short modes running in the loop cross the horizon precisely during the USR phase and, therefore, their spatial
derivatives do not pay any super-horizon suppression. iii) Renormalization. An essential future step is to implement
a thorough renormalization procedure in the context of USR dynamics, a topic that has not yet been addressed in
the existing literature.

We will tackle all the above points in a forthcoming work.

NOTE ADDED

During the peer-review process of this article, several papers appeared in the literature addressing the 1-loop
issue in USR models [91–94]. Subsequent to our work in refs. [92, 93], the authors demonstrate that in the presence
of additional boundary terms, there is a perfect cancellation of the 1-loop correction. However, recently in ref. [94],
the author shows that such cancellation, resulting from the addition of extra boundary terms, is only present in
smooth transitions.
In this added note, we further emphasize the purpose of this work. We demonstrate that in the setup of the

ref. [35], the 1-loop correction remains small compared to the tree-level if there is not an overabundance of PBH,
regardless of the smoothness of the transition. The nature and role of additional boundary terms remain an open
problem beyond the scope of this work.
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FIG. 10. Left: Expansion in time of the unperturbed universe (time passes by along the y-axis); the universe expands by the
same amount at every point. Right: Expansion in time of the perturbed universe. The long mode (⇣L, blue) acts as a local
rescaling of the scale factor, and short scales are modulated accordingly. More specifically, if we consider the black dots we
see that they experience a di↵erent amount of expansion depending on the value of ⇣L.

the schematic in fig. 10. The key point is the following. In the comoving gauge, the short modes evolve in the
background that is perturbed by the long mode. In the limit in which the long mode ⇣L has a wavelength much
longer than the horizon, it simply acts as a rescaling of the coordinates since it enters as a local change of the scale
factor. This is schematically illustrated in fig. 10. This figure shows intuitively that the short scales are modulated
by the presence of the long mode. The presence of the long mode acts as a rescaling of the coordinates and we
can absorb it by rescaling the short-scale momenta q ! q̃ = e⇣Lq [36]. If the power spectrum of the short modes
is scale-invariant, this rescaling does nothing. However, if the power spectrum of the short modes breaks scale
invariance, we schematically have in the loop integral over the short modes, expanding at the first order
Z
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(108)

so that the presence of the long mode a↵ects the correlation of short modes when their power spectrum is not scale
invariant. The second term in the above equation describes precisely the e↵ect put forth before: the presence of the
long mode alters the expectation value of quadratic operators made of short modes, in this case the short-mode
two-point function. This result seem to violate the separate universe conjecture (as also shown in ref. [67, 83]),
which states that, in single field inflation models, the curvature perturbation in the superhorizon limit only acts as
a rescaling of the spatial coordinates (see e.g. ref. [84, 85]) and therefore a local observer in a Hubble horizon patch
cannot measure the superhorizon-limit curvature perturbations because it can be absorbed into a rescaling of the
spatial coordinates. Indeed the separate universe conjecture is limited to the case of single-clock inflation. The
term single-clock inflation usually refers to the most general form for the inflationary action (typically constructed
through the e↵ective field theory approach) that is consistent with unbroken spatial di↵eomorphisms and the
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spontaneously broken). Single-field slow-roll inflation represents the prototypical example of single-clock inflation.
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However USR violates the assumption of an inflationary attractor solution which underlies single-clock inflation.
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attractor. To be concrete, we consider in fig. 11 the phase-space analysis of the SR/USR/SR dynamics presented in
section II B, see also ref. [67] for a similar discussion. First, from the time-evolution of ✏ and ⌘ we reconstruct the
inflationary potential V (�) by means of the reverse engineering approach described in ref. [54]. We then solve the
inflaton equation of motion �̈+ 3H�̇+ V 0(�) = 0 and plot the corresponding phase space trajectory (for di↵erent
initial conditions) in the plane (�,⇧) with ⇧ ⌘ d�/dN . The dynamics evolves from right to left in fig. 11. In
the left panel of fig. 11 we plot the initial SR phase. The attractor nature of SR is evident. The black dotted
lines correspond to two benchmark solutions with large initial velocities. As shown in the plot, they are attracted
exponentially fast by the SR trajectory (black solid line). Consequently, if we consider some perturbation �� in the
field direction (which can be thought as a long-wavelength curvature perturbation in the flat gauge) we remain
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the perturbation �� can be simply traded for a shift in the number of e-folds (red lines in the right panel of fig. 11)
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larger kend/kin. Then, we set �NUSR = 3 and compare the value of J�N!0(3, 3) with J�N (3, 3) as function of �N .
We plot the ratio J�N (3, 3)/J�N!0(3, 3) in the right panel of fig. 6.

Realistic single-field models that feature the presence of a phase of USR dynamics typically have �N = 0.4÷ 0.5
(cf., e.g., ref. [12, 53]). This means that, according to our result in the right panel of fig. 6, we expect that in realistic
models the size of the loop correction gets reduced by one order of magnitude with respect to what is obtained in
the limit of instantaneous SR/USR/SR transition. This confirms the intuition presented in refs. [38].

It should be noted, however, as evident from our discussion in section II B, that in the case of smooth SR/USR/SR
transition the amplitude of the power spectrum gets reduced with respect to the �N ! 0 limit (cf. the left panel of
fig. 3). The origin of this e↵ect becomes evident if we consider the right panel of fig. 5. In this figure, we plot the
time evolution of the curvature mode |⇣̄q| with q̄ = 2 in the two cases of a sharp and smooth transition (dashed and
solid lines, respectively – see caption for details). In the case of a sharp transition, the curvature mode experiences a
longer USR phase, and its final amplitude is larger with respect to the case of a smooth transition. As a consequence,
therefore, we expect that the smaller size of the loop correction will be, at least partially, compensated by the fact
that finite �N also reduces the amplitude of the tree-level power spectrum. In order to quantify this information,
we repeat the analysis done in section IVA2 but now for finite �N . We plot our result in fig. 7. For definiteness, we
consider the benchmark value �N = 0.4 while we keep ⌘II and �NUSR generic as in fig. 4.
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FIG. 7. We consider a generic USR dynamics with varying ⌘II (x-axis) and �NUSR (y-axis). We take ⌘III = 0 and the
smooth limit �N = 0.4. The region hatched in red corresponds to �P1�loop(k⇤) > 0. Along the line defined by the condition
fPBH = 1, we get 100% of DM in the form of asteroid-mass PBHs. The dotted blue line and the red dashed line correspond,
respectively, to the conditions fPBH = 1 and lim�N!0 �P1�loop(k⇤) > 0 as derived in the limit of instantaneous transition.

Our numerical analysis mirrors the previous intuition. The perturbativity bound (the region hatched in red
corresponds to the condition �P1�loop(k⇤) > 0) gets weaker because of the partial cancellation illustrated in the
right panel of fig. 6. However, as previously discussed, the drawback is that taking �N 6= 0 also reduces the peak
amplitude of the power spectrum. Consequently, the condition fPBH = 1 requires, for fixed ⌘II, larger �NUSR.
As for the limit of instantaneous transition, the condition fPBH = 1 does not violate the perturbativity bound

since the two above-mentioned e↵ects nearly compensate each other. However, our analysis reveals an interesting
aspect: modelling the SR/USR/SR transition (and, in particular, the final USR/SR one) beyond the instantaneous
limit reduces the impact of the loop correction but, at the same time, lowers the peak amplitude of the tree-level
power spectrum, which must be compensated by a larger �NUSR see fig. 8. As illustrated in fig. 7, both these
e↵ects must be considered together in order to properly quantify the impact of loop corrections and the consequent
perturbativity bound.

This is an interesting point. Refs. [38–40] argue that if one goes beyond the limit of instantaneous transition then
the loop correction to the CMB power spectrum becomes e↵ectively harmless. Technically speaking, in our analysis
the role of the parameter �6 < h < 0 that in [38–40] (see also ref. [65]) controls the sharpness of the transition
is played by our parameter �N (with h ! �6 that corresponds to our �N ! 0 and h ! 0 that corresponds to
increasing values of �N).

Sizable abundance of PBHs 
in USR single-field inflation 
is not in conflict with 
perturbativity constraints.

On the other hand, 
one-loop corrections 
are sizable, 
and the contribution of short wavelengths to the power spectrum at large
scales does not decouple. This suggests that theoretical constraints dictated by 
the requirement of perturbativity might be important.



21

larger kend/kin. Then, we set �NUSR = 3 and compare the value of J�N!0(3, 3) with J�N (3, 3) as function of �N .
We plot the ratio J�N (3, 3)/J�N!0(3, 3) in the right panel of fig. 6.

Realistic single-field models that feature the presence of a phase of USR dynamics typically have �N = 0.4÷ 0.5
(cf., e.g., ref. [12, 53]). This means that, according to our result in the right panel of fig. 6, we expect that in realistic
models the size of the loop correction gets reduced by one order of magnitude with respect to what is obtained in
the limit of instantaneous SR/USR/SR transition. This confirms the intuition presented in refs. [38].

It should be noted, however, as evident from our discussion in section II B, that in the case of smooth SR/USR/SR
transition the amplitude of the power spectrum gets reduced with respect to the �N ! 0 limit (cf. the left panel of
fig. 3). The origin of this e↵ect becomes evident if we consider the right panel of fig. 5. In this figure, we plot the
time evolution of the curvature mode |⇣̄q| with q̄ = 2 in the two cases of a sharp and smooth transition (dashed and
solid lines, respectively – see caption for details). In the case of a sharp transition, the curvature mode experiences a
longer USR phase, and its final amplitude is larger with respect to the case of a smooth transition. As a consequence,
therefore, we expect that the smaller size of the loop correction will be, at least partially, compensated by the fact
that finite �N also reduces the amplitude of the tree-level power spectrum. In order to quantify this information,
we repeat the analysis done in section IVA2 but now for finite �N . We plot our result in fig. 7. For definiteness, we
consider the benchmark value �N = 0.4 while we keep ⌘II and �NUSR generic as in fig. 4.

○

○

○

○

○

○

●

●

●

●

●

●

FIG. 7. We consider a generic USR dynamics with varying ⌘II (x-axis) and �NUSR (y-axis). We take ⌘III = 0 and the
smooth limit �N = 0.4. The region hatched in red corresponds to �P1�loop(k⇤) > 0. Along the line defined by the condition
fPBH = 1, we get 100% of DM in the form of asteroid-mass PBHs. The dotted blue line and the red dashed line correspond,
respectively, to the conditions fPBH = 1 and lim�N!0 �P1�loop(k⇤) > 0 as derived in the limit of instantaneous transition.
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corresponds to the condition �P1�loop(k⇤) > 0) gets weaker because of the partial cancellation illustrated in the
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As for the limit of instantaneous transition, the condition fPBH = 1 does not violate the perturbativity bound

since the two above-mentioned e↵ects nearly compensate each other. However, our analysis reveals an interesting
aspect: modelling the SR/USR/SR transition (and, in particular, the final USR/SR one) beyond the instantaneous
limit reduces the impact of the loop correction but, at the same time, lowers the peak amplitude of the tree-level
power spectrum, which must be compensated by a larger �NUSR see fig. 8. As illustrated in fig. 7, both these
e↵ects must be considered together in order to properly quantify the impact of loop corrections and the consequent
perturbativity bound.

This is an interesting point. Refs. [38–40] argue that if one goes beyond the limit of instantaneous transition then
the loop correction to the CMB power spectrum becomes e↵ectively harmless. Technically speaking, in our analysis
the role of the parameter �6 < h < 0 that in [38–40] (see also ref. [65]) controls the sharpness of the transition
is played by our parameter �N (with h ! �6 that corresponds to our �N ! 0 and h ! 0 that corresponds to
increasing values of �N).
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I am convinced that a more in-depth study 
in the presence of non-single-clock dynamics is necessary.



Conclusions?
I haven't included the conclusions, for good luck. 
Maybe at the next meeting, I will be able to update you on the things I presented or discuss new ones.




