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One very appealing property of inflation 1s that
a tiny amount of spatial dependence 1s
inevitable.

These tiny, primordial variations in the space-
time, which are naturally present in inflation,
provide the initial inhomogeneities needed to
explain the beginnings of the structures that are
observed today. Their origin in the theory lies
in the quantum behavior of both the field and
the space-time.
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Note that the Fourier transformation is defined with respect to the
comoving coordinates. So, k is the comoving wavenumber
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Space-time 1itself fluctuates
quantum mechanically
about a background that 1s
expanding at an
accelerating rate.
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This extreme expansion
spreads the fluctuations, which
begin with a tiny spatial
extent, throughout a vast
region of the universe, where
they eventually become small
classical fluctuations 1n the
space-time curvature —or
equivalently, small spatial
variations in the strength of

gravity.

The physical wavelength 1s A(¢) =

2ma(t)
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Since everything in the universe
feels the influence of gravity,
these fluctuations in the
gravitational hield

are transferred to the matter
and radiation fields, creating
shghtly over-dense and under-
dense regions. The resulting
matter fluctuations then become
the ‘initial conditions’ that start
the process of collapse which
forms the stars and galaxies of
later epochs.
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To test whether this picture
1s correct, 1t 1S necessary to
describe very accurately the
properties of the pattern
generated by inflation for the
original, primordial
fluctuations 1n space-time
which can then be compared

O
with what 1s inferred from EQ'
observations. —
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The power spectrum of primordial
fluctuations during inflation 1s a
way to describe how the amplitude
of density fluctuations 1n the early
universe varies with different
comoving scales.

A scale-invarant or nearly scale-
invariant spectrum implies that
fluctuations have a relatively
constant amplitude across different
scales.
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The power spectrum of primordial
fluctuations during inflation 1s a
way to describe how the amplitude
of density fluctuations 1n the early
universe varies with different
comoving scales.

A scale-invarant or nearly scale-
invariant spectrum implies that
fluctuations have a relatively
constant amplitude across ditferent
scales.
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Gravitational-wave detections Masses in the Stellar Gr aveyard
made by the LIGO-Vir go- KAGRA (LVK) LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars

Collaborations to date, arXiv:2111.03634

GWTC-3 dataset contains 69 binary HiliiAioREERY ® ¢ 409 ¢ 131 |
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BH events and 7 : 1® °1° °' 04

potential NS-involving binaries . I!!!'M..IM!!!II

(which are characterised
by at least one object with mass below 3
solar mass)

Only GW170817 is confidently regarded as a NS

binary due to the observation of the electromagnetic

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

counterpart “Lower” mass gap: & [2.2 + 6] M
“Upper” mass gap: 2 50 M
10° = | ] LUBLELL 1L S N1 1L L300 | |
02 / / PowerLaw-+Peak | 1| GW event m1|Me] | mao|Mg]
Te — NS )
" Lo = N — PBH-QCD GW190814 23.2716 1 2.5970 05
100 - CW190924 021846 | 8.9770 | 5.0

Intriguingly, our ab-initio PBH distribution allows us to
make some falsifiable predictions: if some of the GWTC-3

events are primordial, then the merger rates

in the subsolar mass range and in the lower mass gap
are high enough to be detectable by future LVK runs. In

particular, the absence of subsolar mergers in O5 would
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10* 10° automatically exclude the primordial origin of the light
mq | M| events within GWTC-3.
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have full control over how we calculate the
abundance of PBHs to ensure that the
predicted signal of gravitational waves has
the right amplitude.
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Uncertainties in the theoretical computation of the PBH abundance arise from various aspects related to the early
universe's physics, inflationary models, and the dynamics of structure formation. Addressing and understanding these
uncertainties are crucial for accurate predictions and comparisons with observational data.

Equation of State during Radiation and Matter Domination:

® The behavior of the cosmic fluid (radiation or matter) during different epochs
influences the collapse of overdense regions into black holes. Variations in the
equation of state can atfect the PBH abundance.

Critical Overdensity for Collapse:

® The critical threshold for collapse, which determines when an overdense
region collapses to form a black hole, can be subject to uncertainties,
particularly if non-Gaussian features in the primordial perturbations are
considered.

Numerical Simulations:

e Numerical simulations used to study PBH formation are subj ect to imitations
and assumptions, and uncertainties can arise from the numerical methods

employed.

Non-Gaussianity:

® Deviations from Gaussian statistics in the primordial perturbations can
introduce additional complexities in predicting the PBH abundance.



Do theoretical arguments exist

against PBHs?
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Finite naturalness criterium: the Higgs
mass 1s naturally small as long as there
are no heavier particles that give large
finite contributions to the Higgs mass.



Let's consider the case of a heavy mass scale not coupled to the Higgs.
[s there a finite naturalness bound?



Let's consider the case of a heavy mass scale not coupled to the Higgs.
[s there a finite naturalness bound?




Let's consider the case of a heavy mass scale not coupled to the Higgs.
[s there a finite naturalness bound?

My < 10 GeV




Let's consider the case of a heavy mass scale not coupled to the Higgs.
[s there a finite naturalness bound?

SEHLg = Jd4x\/—_g [(%MI%I + EHT H) R+ (D,H) (D*H) — V(H'H)

My < 10196714 GeV




Let's consider the case of a heavy mass scale not coupled to the Higgs.

Is there a finite naturalness bound?

1 _
Senrn = |dxy/—g || =Mz + EH'H | R+ (D,H) (D*H) — V(H'H)

2

: Planck+BK18+BAO " 0030 e

My < 10196714 GeV

¢0 [MPI]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The criterion of finite
naturalness distavors large-
field inflationary models
with super-Planckian field

excursions.
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“We have shown that models realizing appreciable amount of PBH formation with the enhanced
small-scale spectrum by USR inflaton dynamics inevitably induces nonperturbative coupling to the
power spectrum on CMB scale. We therefore conclude that PBH formation from cosmological
perturbation theory single-field inflation with an USR dynamics 1s ruled out.”
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Sizable abundance of PBHs
in USR single-hield inflation

is not in conflict with
perturbativity constraints.

On the other hand,

one-loop corrections " 9.25 2.5 2.75 3 3.25 3.5

are sizable, i
and the contribution of short Wavelengths to the power spectrum at large

scales does not decouple. This suggests that theoretical constraints dictated by
the requirement of perturbativity might be important.
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1.5

2.25 2.0

[ am convinced that a more in-depth study
in the presence of non-single-clock dynamics 1s necessary.



Conclusions?

I haven't included the conclusions, for good luck.
Maybe at the next meeting, I will be able to update you on the things I presented or discuss new ones.






