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Introduction

Galaxy Clusters

©

In a background magnetic field, ALPs and photons interconvert.

©

Here we consider non-resonant long base line conversion.

2
o P~ B .L.Lcoherence

perp

©

Galaxy clusters have L ~ Mpc and Lcoperence ~ 10 kpc.
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Introduction

ALP-photon conversion
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Introduction

Why X-rays?

o ALP-photon oscillation length Log ~ —*

wplfmg'
o In galaxy clusters, wy ~ 10712 eV.

o For m, <10712eV, Lo ~ Leuster When w ~ keV.
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ALP-Photon Conversion in Galaxy Clusters

Spectral Modulations

We search for ALPs by studying the X-ray spectra of
point sources in or behind galaxy clusters.
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ALP-Photon Conversion in Galaxy Clusters

Galaxy clusters
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ALP-Photon Conversion in Galaxy Clusters

Photon-ALP conversion in Galaxy Clusters
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ALP-Photon Conversion in Galaxy Clusters

Photon-ALP conversion in Galaxy Clusters
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ALP-Photon Conversion in Galaxy Clusters

Photon-ALP Conversion

o Photon to ALP conversion can lead to modulations in an initially
pure photon spectrum, given by the photon survival probability
Py (E).

o At X-ray energies in galaxy clusters, P,_,.(E) is
pseudo-sinusoidal in %

o ALP induced oscillations in P,_,,(E) would be imprinted on the
observed spectrum.

o We seek to constrain g,, by searching for such oscillations.
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ALP-Photon Conversion in Galaxy Clusters

Photon survival probability
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ALP-Photon Conversion in Galaxy Clusters

Photon survival probability

A1795 Sy1 with axions
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Left: the observed spectrum of the Seyfert galaxy 2E3140 in the galaxy
cluster A1795 fitted with an absorbed power law. Right: the same
spectrum multiplied by the photon survival probability for a realisation of
the A1795 magnetic field and assuming the existence of ALPs with

82y =5 X 10712GeV L.
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ALP-Photon Conversion in Galaxy Clusters

Bounds

The leading bounds are from Chandra transmission grating
spectroscopy of quasar H1821+643 (J Sisk-Reynés et al,
2109.03261):
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ALP-Photon Conversion in Galaxy Clusters

Further improvements

o Future X-ray telescopes
J Conlon et al, 1707.00176; J Sisk-Reynés et al, 2211.05136
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ALP-Photon Conversion in Galaxy Clusters

Further improvements

Q

Future X-ray telescopes

J Conlon et al, 1707.00176; J Sisk-Reynés et al, 2211.05136
Fourier analysis

J Conlon & M Rummel, 1808.05916

MCD Marsh et al, 2107.08040

Polarization

FCD & S Krippendorf, 1801.10557

Machine learning

J. Conlon & M. Rummel, 1808.05916

FCD & S Krippendorf, 1907.07642

S Schallmoser, S Krippendorf, FCD & J Weller, 2108.04827

J Sisk-Reynés et al, 2211.05136
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Magnetic Field Simulation

Magnetic Fields in Galaxy Clusters

o Determined by Faraday rotation measures

o Can estimate the amplitude and statistical properties of the
magnetic field, but not the exact field configuration

o B(r) ~ By (2}’

352
o ne(r) = ng <1 + ;—i)

o Power spectrum within a range of typical coherence lengths
/\min - Amax
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Magnetic Field Simulation

1D modelling

o Used by most work
o Simulate only the line of sight to the source

o The magnetic field is modelled by domains of constant field
magnitude and direction

o Domain length taken from a distribution of coherence lengths for
the cluster

o Magpnetic field direction is randomized in in each domain

o Magpnetic field is discontinuous and not divergence free
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Magnetic Field Simulation

3D modelling

o Start in Fourier space, randomly generating a vector potential
with power spectrum )Ak‘z ~ k=(2) between ki, = 27 [ Amax
and kmax = 27/ Amin

o Magnetic field in Fourier space: B(k) = ik x A(k)

o Fourier transform B(k) to obtain a real space field

o The radial distribution of the field amplitude is implemented as a
multiplicative factor

o The 3D field is more realistic but takes much longer to generate
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Magnetic Field Simulation

Magnetic field comparison
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Magnetic Field Simulation

Magnetic field comparison

Bounds using X2, as a test statistic for the source A1795Sy1:
o 1D model (not upscaled): g, < 1.5 x 10712GeV ™!

o 1D model (upscaled): ga,, < 1.1 x 10712GeV ™!

o 3D model: g,,, < 0.9 x 10-12GeV !
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Magnetic Field Simulation

Magnetic field comparison
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Magnetic field comparison
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Machine Learning

Machine Learning

Seek a function:

0,if no ALPs

f(D;) =
(1) 1,if ALPs,

based on a training set of examples of each case.

We must use residuals rather than the raw data as the initial
amplitude and slope of the source are unknown.
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Machine Learning

Classifiers

o We train a set of classifiers {C,, = }. Classifier Cg,  is trained
with fake ALP data residuals with coupling g,,. For sufficiently
low g,,+, the classifier will not be better than random.

o We wish to use these classifiers to place bounds on g,.

o The ALP-photon interaction g,,, controls the size of the ALP
induced effects.
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Machine Learning

Classifier Performance
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QDA classifier trained with simulated observations_of A1795Syl1.
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Machine Learning

Approximate Bayesian computation

o Used when the likelihood cannot be calculated or would be
computationally prohibitive to calculate.

o The posterior distribution is instead simulated.

o Review: S Sisson, Y Fan & M Beaumont, 1802.09720
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Machine Learning

Approximate Bayesian computation

Our summary statistic TS for a data set D; is the highest g,,, such
that Cg, . classifies D; as containing ALPs.

@ Feed all test sets into all classifiers. Our test sets are evenly
space in g,,, i.e. we assume a uniform prior.

@ Calculate the test statistic in each case.

@ If the summary statistic of the test data is the same as for the
real data, we accept the coupling of the test data.
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Machine Learning

Approximate Bayesian computation

o As output we obtain a set of g,,, sampled from the posterior
distribution which can be used to approximate the posterior.

o Values for g, larger than the 95th percentile of the
approximated posterior distribution can then be excluded at a
95% confidence level.
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Machine Learning

Approximate Bayesian computation
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ApBC-approximated posterior distribution and its 95th percentile for
the QDA classifiers of the Syl galaxy 2E3140 within A1795..
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Machine Learning

Results: Syl 2E3140 galaxy within A1795

Method Bound (GeV™1)
X2 0.9
Decision Tree Classifier 1.1
AdaBoost Classifier 0.9
Random Forest Classifier 0.9
Gaussian Naive Bayes 0.9
Support Vector Machine 1.4
Quadratic Discriminant Analysis 0.9
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Machine Learning

Results: Quasar CXOU J134905.8+4-263752 behind
A1795

Method Bound (GeV™1)
X2 1.0(84% C. L.)
Decision Tree Classifier No bound
AdaBoost Classifier No bound
Random Forest Classifier 1.9
Gaussian Naive Bayes No bound
Support Vector Machine 0.6
Quadratic Discriminant Analysis 1.6
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Machine learning and Athena
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Polarization

ALP-photon conversion

A, 0 Ay ax | )
w+ 0 A, A, — i0, | 7y> =0
DAjax Ayay A, | a)

Only the photon polarization parallel to the external
magnetic field participates in ALP-photon conversion.
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Polarization

IXPE
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Polarization

Type | AGN polarization
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Polarization

Type | AGN polarization

Convolved Linear Polarisation Degree
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Conclusions

Conclusions

o The magnetic fields of galaxy clusters are one of the best ALP
to photon converters at low masses.

o Leading bounds on low mass ALPs arise from the observation of
point sources shining through galaxy clusters.

o The low hanging fruit in this area has gone, but further
improvements are possible.
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