Back to the phase space: Thermal Axions

Francesco D'Eramo

Università degli Studi di Padova

Barolo Astroparticle Meeting (BAM): Axions in the sky! — 13 June 2024

The QCD Axion and ALPs

Ubiquitous in extension of the standard model

- QCD axions: global U(1)_{PQ} symmetry spontaneously broken and color anomalous
- Pseudo-Nambu-Goldstone-bosons
- Axions in string theory

Results in this talk mostly about the QCD axion (easily generalized especially when the mass does not play any role)

Hot Axions

Axions produced with kinetic energy much larger than their mass (i.e. "hot")

Additional radiation at:

- BBN ($m_a \leq MeV$)
- CMB formation ($m_a \approx 0.3 \text{ eV}$)

$$\rho_{\rm rad} = \left[1 + \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}} \right)^4 N_{\rm eff} \right] \rho_{\gamma}$$
$$\Delta N_{\rm eff} = \frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \frac{\rho_a}{\rho_{\gamma}}$$

Thermal Production

<u>Unavoidable</u> Production Source!

Scatterings and/or decays involving primordial thermal bath particles (axion energy $\gg m_{a,}$ i.e. "hot")

GOALS:

- Compute how many axions are produced in the early universe
- Quantify the resulting effect on cosmological observables

How to Predict ΔN_{eff}

ΔNeff - I: Instantaneous decoupling

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

ΔNeff - I: Instantaneous decoupling

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

<u>ΔNeff - I: Instantaneous decoupling</u>

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

$\Delta Neff - II: Boltzmann equation for n_a$

- Track the number density of axions
- Convert the asymptotic result via the equilibrium distribution

<u>ΔNeff - I: Instantaneous decoupling</u>

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

$\Delta Neff - II: Boltzmann equation for n_a$

- Track the number density of axions
- Convert the asymptotic result via the equilibrium distribution

$$\frac{dn_a}{dt} + 3Hn_a = \sum_{\alpha} \gamma_{\alpha} \qquad \qquad \Delta N_{\text{eff}} \simeq 74.85 \ Y_a^{4/3}$$

 $\alpha = \text{Production processes}$

<u>ΔNeff - I: Instantaneous decoupling</u>

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

$\Delta Neff - II: Boltzmann equation for n_a$

- Track the number density of axions
- Convert the asymptotic result via the equilibrium distribution

Scenarios for Thermal Axions

Single Coupling Switched On

Axion coupled to a given Standard Model field Ferreira, Notari, **Phys.Rev.Lett. 120 (2018)** FD et al, **JCAP 11 (2018)** Arias-Aragón et al., JCAP 11 (2020) and **JCAP 03 (2021)** Green at al., **JCAP 02 (2022)** FD et al., **Phys.Rev.Lett. 128 (2022)**

– UV Completions

FD, Hajkarim, Yun, JHEP 10 (2021) —

 • KSVZ Axion: Standard Model fields are PQ-neutral and color anomaly from heavy colored and PQ-charged fermion Ψ Kim, PRL 43 (1979)
 Shifman, Vainshtein, Zakharov, NPB 166 (1980)

• DFSZ Axion: Standard Model fields charged (two Higgs doublets) and color anomaly from quarks Zhitnitsky, SJNP 31 (1980)

Dine, Fischler, Srednicki, PLB 104 (1981)

A Leptophilic Axion

Axion Coupled to Heavy Quarks

KSVZ Axion — Production Rate

FD, Hajkarim, Yun, **JHEP 10 (2021)**

KSVZ Axion — Results for ΔN_{eff}

DFSZ Axion – Production Rate

FD, Hajkarim, Yun, **JHEP 10 (2021)**

DFSZ Axion – Results for ΔNeff

FD, Hajkarim, Yun, **JHEP 10 (2021)**

Axion Mass Bound

FD, Di Valentino, Giarè, Hajkarim, Melchiorri, Mena, Renzi, Yun, JCAP 09 (2022)

A Minor Variation: FV Axions

Target of several terrestrial experiments

What about their role in the early universe?

Current and future cosmological bounds competitive (or sometimes even better!) than terrestrial searches

FD, Yun, **Phys.Rev.D** 105 (2022)

Where Do We Stand?

T/GeV

Where Do We Stand?

T/GeV

What's Next?

Axion production rate across the confinement scale still unknown

$$\left\{ egin{array}{ll} \gamma_a = n_i n_j imes \left\langle \sigma_{ij
ightarrow ja} v_{
m rel}
ight
angle
ight.
ight.$$
 Thermal bath Particle Physics

- I. Cross sections with other hadrons?
- 2. Thermal bath description between 150 MeV and fews GeV?
- 3. Boltzmann equation evolution and cosmological observables?

Back to the Phase-Space

Model-independent analysis: generic production of a light X

$$\mathcal{B}_1 \ldots \mathcal{B}_n \to \mathcal{B}_{n+1} \ldots \mathcal{B}_m X$$

$$\frac{df_X(k,t)}{dt} = \left(1 - \frac{f_X(k,t)}{f_X^{eq}(k,t)}\right) \mathcal{C}_{n \to mX}(k,t)$$

- I. Keep track of phase-space and compute the energy density
- 2. Quantum statistical effects take into account
- 3. Energy exchanged with the thermal bath accounted for

Error in predicting ΔN_{eff}

 $\mathcal{L}_{\rm int} = \frac{\partial_{\mu}a}{2f_a} \sum_{\psi} c_{\psi} \overline{\psi} \gamma^{\mu} \gamma_5 \psi$

Recent studies performed by tracking the axion number density

Baumann et al, **Phys.Rev.Lett. 117 (2016)** Ferreira, Notari, **Phys.Rev.Lett. 120 (2018)** FD et al, **JCAP 11 (2018)** Arias-Aragón et al., **JCAP 11 (2020)** Arias-Aragón et al., **JCAP 03 (2021)** Green at al., **JCAP 02 (2022)**

Will it change if we go back to the phase space?

Difference detectable by future CMB-S4 surveys!

- MUON: effect maximum in regions in tension with stellar bounds
- TAU: effect maximum in allowed regions

FD, Lenoci, in preparation

FD, Lenoci, in preparation

FD, Lenoci, in preparation

The Way Back to the Phase Space

FD, Di Valentino, Giarè, Hajkarim, Melchiorri, Mena, Renzi, Yun, **JCAP 09 (2022)**

Axion cosmological mass bound

The Way Back to the Phase Space

