Bosonic Halos: Axion Stars and Dark Matter Capture

DALL-E 3 illustration Bosenova"

Joshua-Eby Oskar Klein Centre

Stockholm University Barolo Astroparticle Meeting (BAM) 2024/06/13

Light and Ultralight Dark Matter

(2102.01082)

de Broglie wavelength λ_{dB}

Wave amplitude \Longleftrightarrow DM density ρ

$\frac{Average}{\rho_{dm}} \text{ local density} \\ \rho_{dm} = 0.4 \text{ GeV/cm}^3 \\ \text{with variations on scales of order } \lambda_{dB}$

Traveling waves ("quasiparticles")

Standing waves (quasi-static bound states)

Budker, **JE**, Gorghetto, Jiang, Perez (2306.12477)

Joshua Eby | Stockholm University

The Very Local DM Density (inside the solar system)

DM bound in distant clumps $\rho \ll \rho_{\rm dm}$

*for ULDM, *always* $\exists \mathcal{O}(1)$ fluctuations

Standard Scenario

No (significant*) small-scale overdensities $\rho = \rho_{\rm dm} \simeq 0.4 \, {\rm GeV/cm}^3$

Overdensities inside the Solar System

 $\rho \gg \rho_{\rm dm}$

Axion Cosmology

 $V(\Phi) = \lambda_{\Phi} \left(|\Phi|^2 - \frac{f_a^2}{2} \right)^2 + \Lambda^4 \left(1 - \cos \frac{\phi}{f_a} \right)$

QCD axion:

$$V_{\theta}(\phi) = \left(\theta_{\text{QCD}} + \frac{\phi}{f_a}\right) G^{\mu\nu} \tilde{G}_{\mu\nu} \longrightarrow 0 \qquad \Lambda_{\text{QCD}}^4 \simeq H$$

$$\rightarrow \Omega_a^{\text{misalignment}}(f_a, \theta_i) \simeq 0.1 \left(\frac{f_a}{10^{12} \,\text{GeV}}\right)^{7/6} \theta_i^2$$

$$\Omega_a^{\text{misalignment}}(f_a) \simeq 0.1 \left(\frac{f_a}{10^{12} \,\text{GeV}}\right)^{7/6} \langle \theta_i^2 \rangle_{\pi^2/3}$$
predict

 $m_r^{-1} \sim f_a^{-1}$ H^{-1}

World-leading simulations: $\log \frac{m_r}{H} \simeq 9$

Another view

Buschmann, Foster, Hook, Peterson, Willcox, Zhang, Safdi (2108.05368)

World-leading simulations: $\log \frac{m_r}{H} \simeq 9$

Physical: $\log \frac{m_r}{H} \simeq 70$

Gorghetto, Hardy, Villadoro (2007.04990)

Movie via Marco Gorghetto https://www.youtube.com/watch? v=DbvM7emtodo

World-leading simulations: $\log \frac{m_r}{H} \simeq 9$

Physical: $\log \frac{m_r}{H} \simeq 70$

Axion String Decay

Post-inflationary scenario: $\Omega_a = \Omega_a^{\text{misalignment}}(f_a) + \Omega_a^{\text{strings}}(f_a)$

Credit: Ken'ichi Saikawa

Bosonic Halos

Rest of this talk: more general because we take m_{ϕ} , f_a as free parameters (need not assume QCD axion)

ALPs and Temperature Dependence

Wong (2112.05117)

Axion Miniclusters

'Typical' example with
$$m(T) = m$$
, i.e. $n = 0$
 $M_{\rm mc} \sim (1 + \delta_a) M_0 \sim 10^{-10} M_{\odot} (1 + \delta_a) \left(\frac{f_a}{10^{14} \,{\rm GeV}}\right)^2 \left(\frac{m}{10^{-10}}\right)^2$
 $R_{\rm mc} \sim \frac{L_1}{z_{\rm eq} \delta_a} \sim \frac{10 \,{\rm au}}{\delta_a} \left(\frac{10^{-10} \,{\rm eV}}{m_{\phi}}\right)^{1/2}$ $\rho_{\rm mc} \sim \rho_{\rm eq} \delta_a^2$

Hogan and Rees (PLB 1988) Kolb and Tkachev (hep-ph/9303313)

> O'Hare, Pierson, Redondo, Wong (2112.05117)

Gravitational microlensing

Radio signals from neutron star encounters

Gravitational waves from axion miniclusters? Sun, Zhang (2003.10527) See also Urrutia (https://pos.sissa.it/454/046/pdf)

Explain surprisingly luminous early galaxies in JWST? Hütsi, Raidal, Urrutia, Vaskonen, Veermäe (2211.02651)

Eggemeier, O'Hare, Pierobon, Redondo, Wong (2212.00560)

-5 mpc

-5 mpc

Minicluster tidal disruption \rightarrow numerous axion DM streams \rightarrow some recovery of local density + nontrivial velocity distribution

R_☉

Galactic X

+5 mpc

Relaxation

Letter | Published: 22 June 2014

Cosmic structure as the quantum interference of a coherent dark wave

Hsi-Yu Schive, Tzihong Chiueh [™] & Tom Broadhurst

Nature Physics 10, 496–499 (2014) Cite this article

35k Accesses | 543 Citations | 145 Altmetric | Metrics

Mocz et al. (1705.05845)

Eggemeier and Niemeyer (1906.01348)

Levkov, Panin, Tkachev (1804.05857) Video via Alexander Panin on YouTube

Chen et al. (2011.01333)

15

(among others!)

Relaxation Timescale*

Ratio: $r_{\lambda g} \equiv \frac{\tau_{\text{relax}}^{\lambda}}{\tau_{\text{relax}}^{g}} \simeq G^{2} f_{a}^{4} v_{\text{dm}}^{4} = \left(\frac{f_{a} v_{\text{dm}}}{M_{\text{Pl}}}\right)^{2}$

*violent relaxation, e.g. during merger, is much faster (basically instantaneous)

Sikivie and Yang (0901.1106) Levkov, Panin, Tkachev (1804.05857) Kirkpatrick, Mirasola, Prescod-Weinstein (2007.07438) Chen, Du, Lentz, Marsh (ﷺ) (2109.11474)

Note also a possible cross-term $\propto G\lambda$, highly relevant when $r_{\lambda g} \sim \mathcal{O}(1)$ or λ repulsive Jain, Wanichwecharungruang, Thomas (2310.00058)

ULDM Ground States

The most important fact about a **boson star!**

 $M_{\star} \simeq \frac{1}{Gm_{\phi}^2 R_{\star}}$

Chavanis (1103.2050) Chavanis, Delfini (1103.2054)

Size of a Boson Star

The Soliton—Host-Halo Relation

(or Core-Halo Relation)

Rule: 1 boson star per halo with $M_{ch} \simeq 10^9 M_{\odot} \left(\frac{10^{-22} \,\mathrm{eV}}{m_{ch}}\right) \left(\frac{M_{\text{halo}}}{10^{12} \,M_{\odot}}\right)^{1/3} \qquad \left(\frac{E}{M}\right)_{\text{soliton}} = \left(\frac{E}{M}\right)_{\text{halo}}$

Tested in simulations for

- halos with $M_{\rm halo} \sim (10^8 10^{12}) M_{\odot}$
- ULDM mass $m_{\phi} \sim (10^{-20} 10^{-22}) \,\mathrm{eV}$
 - Other systems with small overdensities (e.g. QCD axion miniclusters)

equivalent to

and therefore

Bar, Blas, Blum, Sibiryakov (1805.00122) Bar, Blum, **JE**, Sato (1903.03402)

Reasons to be (at least a little bit) skeptical:

- larger simulation volumes \longrightarrow scatter, $M_{ch} \propto M_{halo}^{2/5}$? $M_{halo}^{2/3}$? • can't be valid for $M_{ch} \rightarrow M_{halo}$ Chiba (2110.11882)
- Valid when m_{ϕ} is large? at fixed M_{halo} , predicts very large overdensity

The Soliton—Host-Halo Relation

• Valid when m_{ϕ} is small? at fixed M_{halo} , predicts very large overdensity

Cosmological simulations

 m_{ϕ}, f_a, n, \dots post-inflation?

Extrapolation? for string decay q?

Early Formation of QCD Axion Stars

Cosmological simulations

Model dependence: m_{ϕ}, f_a, n, \dots post-inflation ?

Extrapolation? Power-law exponent for string decay q?

String++ decay

In preferred QCD axion DM range, collapse at MRE <u>directly</u> leads to $f_{\rm dm} \sim {\rm few} - 20\%$ DM fraction in boson stars!

 f_a/GeV 10¹⁰ 5×10^{10} 10¹¹ 5×10^{9} star = 0. 10-4 eV4 0.2 0.5 $k_{\delta}/k_J|_{\rm MRE}$

Gorghetto, Hardy, Villadoro (2405.19389)

> DM MASS FRACTION

MASS DISTRIBUTION

(at MRE)

Boson Star Collapse \longrightarrow **Bosenova**

Image: Arakawa, JE, Safronova, Takhistov, Zaheer (2306.16468)

Explicit rate calculation: # bosenovae/galaxy today can be as large as few/day Maseizik, Sigl (2404.07908)

Bosonic Halos

- Need nearby collapse, likely rate-limited \bullet
- Rate is *highly* model-dependent \bullet

Requires extrapolation of core-halo relation Requires enhancement of small-scale to large m_{ϕ} matter power spectrum Assumptions about growth rate • Need enhanced $g_{\phi\gamma}$ relative to simplest model

Boson Star Collapse \longrightarrow Bosenova \longrightarrow Signals

Diffuse Axion Background from Axion Bursts (including bosenovae)

Eby, Takhistov (2402.00100)

Searches for Boson Stars

ULDM Ground States

"Quantum" pressure (Repulsive)

Self-interactions (usually attractive)

(small when density small, return to this later)

Balance of gradient+gravity in the field

Structure depends on source of gravity

ULDM itself (self-gravity)

 $\nabla^2 V_{\rm g}(\psi) = 4\pi G m_{\phi}^2 |\psi|^2$

Boson **Stars**

What is a Gravitational Atom?

Bound states around an external body,

$$V_g(r) = -\frac{\alpha_g}{r} = -\frac{Gm_\phi M_\odot}{r}$$

$$R_{\star} = (m_{\phi} \alpha_g)^{-1} \simeq \frac{1}{G m_{\phi}^2 M_{\odot}}$$

Coulomb potential:
$$V(r) = -\frac{a}{r}$$

Bohr radius:
$$a_0 = (m_e \alpha)^{-1}$$

Gravitational Atoms from ULDM Capture

Self-interactions can move particles from scattering states to bound states (and vice versa)

Gravitational Atoms from ULDM Capture

Budker, JE, Gorghetto, Jiang, Perez (2306.12477)

Gravitational Atoms from ULDM Capture

Gravitational Atom in our Solar System

32

Gravitational Atom in our Solar System

33

Gravitational Atom in our Solar System

Samuel Gómez Master's Student Uppsala University

<u>Radio telescopes</u>: Gong++ (2308.08477)

Conclusion: New Paths to Discovery

We are exploring the unavoidable and unexplored consequenc of the theory, to elucidate the nature o ULDM and find new paths to discovery

		Big open questions remain:
ces	•	Core-halo relation? mass growth rate?
of		Mass distribution of boson stars?
у	•	Signals from GAs across the galaxy?

Bosonic Halos

DALL-E 3 illustration "Cosmic WISPers"

Thank you for your attention!

