PERSPECTIVES OF TRANSMUTATION, CONTROLLED FISSION AND CHARACTERIZATION OF MATERIALS WITH HIGH-INTENSITY ELECTRON ACCELERATORS

David Alesini (INFN-LNF, Frascati) Nicola Colonna (INFN-BA, Bari)

Workshop Transizione Energetica (INFN-E e INFN-A)

21–22 Feb 2024 INFN Laboratori Nazionali del Sud Europe/Rome timezone

ACKNOWLEDGEMENTS:

Hans Braun (PSI) Alessandro Gallo (INFN-LNF), Luca Serafini (INFN-MI), Luigi Faillace (INFN-LNF) Giacomo Griseri (Univ. La Sapienza)

OUTLINE

- **1. INTRODUCTION: THERMAL REACTORS, ADS**
- **2. PROTON BASED SPALLATION SOURCES**

3. ELECTRON BASED NEUTRON SOURCES

- CHARACTERISTICS, PROPERTIES
- OPTIMIZATION FOR NUCLEAR REACTORS
- NEUTRON PROPERTIES: SPECTRUM, FLUX,...
- APPLICATIONS

4. LINEAR ACCELERATOR AS A STUDY MACHINE

- 5. SYNCHROTRON BASED SOURCES, PERSPECTIVES AND SYNERGIES WITH FUTURE COLLIDERS
- 6. CONCLUSIONS

INTRODUCTION: NUCLEAR REACTIONS IN A THERMAL REACTOR

Most reactors use the ²³⁵U as a fuel which, after having absorbed a neutron, can fission in many different ways typically producing a two nucleus, with mass numbers around 95 and 135. Some of the products are themselves unstable and carry out beta decay until you get two stable nuclei.

 \Rightarrow There are no commercial fast reactors operation in the world (safety,...)

ACCELERATOR DRIVEN SUBCRITICAL REACTORS

ADS systems have been proposed for:

- ⇒ transmutation of specific isotopes present in spent nuclear fuel;
- ⇒ generation of electricity;
- \Rightarrow **production of fissile materials** through **fertile-to fissile** conversion.

Basically, an ADS has two basic components when used for controlled fission:

- a neutron source
- a **subcritical core** which could contain thorium, uranium, reprocessed fuel and radioactive waste.

To calculate the **energy gain we** consider that the number of secondary neutrons N_s produced from N_0 primary neutrons:

$$N_s = N_0 \frac{k_{eff}}{1 - k_{eff}}$$

where **k**_{eff} is the neutron multiplication factor (**k**_{eff}<1 for subcritical reactors). The Energy gain G is the ratio of thermal energy produced relative to input beam energy supplied:

$$G = \frac{\Delta E_{th}}{\Delta E_{beam}} = \frac{\Delta E_f N_0}{N_b E_p \nu} \frac{k_{eff}}{1 - k_{eff}} = G_0 \frac{k_{eff}}{1 - k_{eff}} = \frac{P_{th}}{P_{beam}}$$

where N_b is the number of beam particles (N_o/N_b is the ratio between the primary neutron per beam particle) and E_p is their energy, ΔE_f is the energy liberated in each fission process and v are the number of neutrons generated in each fission.

Advantages relative to critical reactors:

- ⇒ Flexibility with respect to fuel composition i.e. an ADS can burn fuels which would be problematic in critical reactor
- ⇒ The second advantage is potentially enhanced safety of subcritical reactor systems relative to critical systems
- ⇒ ADSs have been proposed for power generation using the Th233 (fertile material). The neutron source breeds the 233U (from Th) that is a fissile material. Such a system is capable of operating on a pure Th feed stream, and has much-reduced minor actinide production, which simplifies waste handling.

$$n + {}^{232}Th \longrightarrow {}^{233}Th + \gamma$$

$${}^{233}Th \longrightarrow {}^{233}Pa + e^{-} + \bar{\nu}$$

NEUTRON SOURCES BASED ON PROTON SPALLATION SOURCES

- \Rightarrow **Spallation neutron sources** are the primary accelerator-driven source of intense neutrons. It is a complex, multistep process (incident high energy proton collides with a nucleus, exciting it and ejecting nucleons and particles that subsequently interact with other nuclei in a cascade)
- \Rightarrow They require:
 - high power proton accelerators in the GeV energy range
 - heavy metal targets for efficient neutron production
- Neutron production is quite efficient approximately 20 \Rightarrow neutrons are produced per 1 GeV proton.
- \Rightarrow Several technical problems:
 - operation of MW proton beam
 - Target
 - Cooling
 - windows
- Moderators required if we thermal pilot want to reactor
- Good for fast reactors with \Rightarrow many technical challenges.
- Strong international effort
- \Rightarrow High cost

	ATW	XT-ADS	EFIT	MYRRHA	EA	JAEA	C-ADS
Date	1999	2007	2007	2007	1995	2007	2012
Reference	40	117	117	119	43	120	121
Technology	SC linac	SC linac	SC linac	SC linac	Cyclotron	SC linac	SC lina
Number of cores	4	1	1	1	1	1	1
Beam energy (GeV)	1.0	0.6	0.8	0.6	1.0	1.5	1.5
Beam power (MW)	45	1.5	16	2.4	15	30	15
Beam current (mA)	45	2.5	20	2.5 - 4.0	15	20	10
Target	LBE	LBE	LBE	LBE	Pb	LBE	LBE
k_{eff} (maximum)	0.97	0.95	0.97	0.95	0.98	0.97	
Thermal power (MW)	840	57	400	85	1500	800	>1000

BEAM

Fig. 2. Neutron spectrum for two spallation target materials, mercury and lead-bismuth eutectic, for 1.5 GeV incident protons. (Reprinted from Ref. 9.)

Fig. 8. Accelerator beam power required to drive a subcritical core at fixed thermal power for three different neutron multiplication factors

S. D. Henderson, Spallation Neutron Sources and Accelerator-Driven Systems, Reviews of Accelerator Science and Technology Vol. 6 (2013) 59-83

ELECTRON BASED NEUTRON SOURCES

- ⇒ Electron based neutron sources studied and implemented since many years [S.S. Abalin 1985]
- \Rightarrow They are based on **photo-nuclear production**
- \Rightarrow Limitations: relatively low neutron rate per incident electron ~8%
- ⇒ Possibility to use a low energy (<100 MeV), high intensity (>10 mA) electron sources with a final rate >4x10¹⁴ (n/s/mA) [H. Feizi and A.H. Ranjbar, 2016 JINST 11 P02004].
- \Rightarrow Small power reactors especially if we can implement schemes with $k_{eff}\sim 0.99$
- \Rightarrow Strongly reduced costs, wide availability of electron accelerators at energies of 100-200 MeV
- \Rightarrow low radiation damage to the target
- \Rightarrow Interesting perspectives as neutron sources and applications

PHOTO-NEUTRON SOURCE: CHARACTERISTICS AND PROPERTIES

- \Rightarrow For gamma rays with energies between threshold (binding energy) to ~40MeV, neutron production mainly occurs through giant dipole resonance (excitation of a nucleus that decays by neutron emission). It takes place for photon energies in the range of 5-25MeV. Optimum photons energies ~15MeV.
- ⇒ Bremmstrahlung gamma spectrum has a large bandwidth and only a small portion is "useful" for neutron production

PROPOSED SCHEME AND TARGET FOR A SMALL POWER NUCLEAR REACTOR

[H. Feizi and A.H. Ranjbar, 2016 JINST 11 P02004].

- \Rightarrow The target has a **e**- γ **converter in W** and a γ -**n converter in U**.
- ⇒ **Beryllium** is used as another converting layer since it has three peaks of photoneutron production below 3 MeV;
- \Rightarrow Heavy water could be used as a coolant and moderator
- \Rightarrow The fuel region that includes the radioactive waste has a **cylindrical shape**;
- \Rightarrow The **internal reflector** (Pb) provides the smoothness of photoneutron flux along the Z-axis and the **external reflector** (BeO) prevents the photoneutrons escaping from the core and backscatters them into the system.

Numbers:

- \Rightarrow 20 mA@100 MeV beam, 2 MW beam power, 1.2x10¹⁷ e/s
- \Rightarrow Bremsstrahlung radiation (full spectrum) is 830 kW,
- \Rightarrow in the range **10-20 MeV** is photon power is **180 kW**, corresponding to 7.6x10¹⁶ ph/s;
- \Rightarrow Feizi et al. calculations gives **5-7x10¹⁵ n/s**

Accelerator output current (mA)

NEUTRON PROPERTIES: SPECTRUM FOR NUCLEAR POWER APPLICATIONS

10⁵

10

10

10

10

10⁻⁹

10-1 (b)

Fotal cross

- ⇒ Large portion of neutrons are thermal neutrons and can be directly used to fission of U-235 and Pu-239 in a thermal reactors. Advantage.
- ⇒ The same energy spectrum is appropriate for breeding Th-232 or U238
- ⇒ Preliminary works [*Bin Liu 2022*] on a design of a small subcritical reactor have been done but complete works have to be done.
- ⇒ Critical components of this scheme is the target (W) power density

⇒	А	scal	ed	aco	celer	ator
	wit	h a	a 1	00-4	400	kW
	<mark>abs</mark>	olut	tely		feas	ible
	anc	1		e	xtrer	nely
	inte	eres	ting	to	test	the
	sch	eme	e an	d t	o de	eply
	inve	estig	gate			the
	сар	abil	ities	of	<mark>gam</mark>	ma-
	bas	ed	rea	acto	ors	(see
	nex	at s	lide	s).	2-4	mΑ
	60-	100	Me	V. k	eff li	mits
	etc	•••				

r	Parameter	Value [React.]	Value [exp.]
	Beam Energy (E _p)	100 MeV	60-100 MeV
y Y	Beam current (I_{b})	20 mA	2-4 mA
9	Beam power (P _{beam})	2 MW	100-400 kW
y e	Primary n flux (N ₀)	5-7x10 ¹⁵ n/s	0.2-1.4x10 ¹⁵ n/s
-	G ₀	0.033-0.047	0.033-0.047
5 5	k _{eff}	0.985	0.985
S	G	2.2-3.1	2.2-3.1
	Thermal power (P _{th})	4.4-6.2 MW	0.3-1.2 MW
	ν	2.4	2.4

LINEAR ACCELERATOR FOR A POSSIBLE IMPLEMENTATION

31st Int. Linear Accel. Conf., LINAC2022, Liverpool, UK **LIGHTHOUSE - A SUPERCONDUCTING LINAC** FOR PRODUCING MEDICAL ISOTOPES

J. M. Krämer, G. Blokesch, M. Grewe, B. Keune, V. Kümper, M. Pekeler, C. Piel, P. v. Stein, T. T. Trinh, C. Quitmann[†] RI Research Instruments GmbH, Bergisch Gladbach, Germany

- beam power: 3 MW
- beam energy: 75 MeV
- beam current: 40 mA at 1.3 GHz continuous wave (CW).
- DC photo-gun operates at 350 keV
- Gun and SRF module are based on the CBETA injector design by **Cornell University**

Possibility to use

1.3 GHz TESLA-type cavities

- \Rightarrow **Isotope** ⁹⁹**Mo** is used for diagnosing several 10 million patients every year.
- \Rightarrow Up to now, it is produced from highly enriched Uranium (HEU) using high-flux neutron reactors.
- \Rightarrow The Institute for Radio Elements (IRE), Belgium has projected the design of a high-power superconducting linac for producing 99Mo without use of nuclear fission as part of their SMART project.
- \Rightarrow The LightHouse accelerator consists of a photo gun and seven superconducting radiofrequency (SRF) modules, a beam splitter, and target illumination optics. It will deliver two electron beams of 75 MeV and 1.5 MW each.
- \Rightarrow The electrons are stopped in the 100Mo target, producing bremsstrahlung. A (γ, n) reaction will then knock out one neutron from the Mo-nucleus, yielding the radioisotope 99Mo.

COMPARISON OF NEUTRON FLUX PROPERTIES WRT EXISTING FACILITIES

- \Rightarrow the proposed neutron source is a **CW source**
- ⇒ beam power 1-2 orders of magnitude larger than the electron based existing facilities
- \Rightarrow **neutrons per second are 1-3 order of magnitude larger** than the electron based existing facilities

Progress in Particle and Nuclear Physics 101 (2018) 177–203

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

ELSEVIER

Neutron physics with accelerators

N. Colonna^a, F. Gunsing^b, F. Käppeler^{C,*} ^a INFN, Sezione di Bari, Italy ^b CEA Irfu, Universite Paris-Saclay, Gif-sur-Yvette, France ^c Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Table 1

Parameters of several neutron time-of-flight facilities, most of them still in use. CSNS and NFS are planned to start soon. The primary beam parameters, the material of the neutron production target, and the number of neutrons produced at the source are given by indicative numbers.

Facility	Location	Beam	Energy (MeV)	Target	Pulse width (ns)	Beam power (kW)	rep. rate (Hz)	Flight paths (m)	Neutrons per pulse
RPI	Troy, USA	e	60	Та	5	0.45	500	15-250	3.6×10^{9}
		e	60	Ta	5000	>10	300	15, 25	4.8×10^{11}
ORELA	Oak Ridge, USA	e	180	Ta	2-30	60	12-1000	9-200	1×10^{12}
GELINA	Geel, Belgium	e	100	U	1	10	40-800	5-400	4.3×10^{10}
nELBE	Rossendorf, Germany	e	40	L-Pb	0.01	40	500 000	4	5.4×10^{7}
IREN	Dubna, Russia	e	30	W	100	0.42	50	10-750	7.7×10^{10}
PNF	Pohang, Korea	e	75	Ta	2000	0.09	12	11	1.7×10^{10}
KURRI	Kumatori Japan	e	46	Ta	2	0.046	300	10, 13, 24	2×10^{9}
		e	30	Та	4000	6	100	10, 13, 24	8×10^{10}
LANSCE-MLNSC	Los Alamos, USA	р	800	W	135	800	20	7-60	7×10^{14}
LANSCE-WNR	Los Alamos, USA	р	800	W	0.2	1.44	13900	8-90	8×10^{9}
n_TOF	Geneva, Switzerland	р	20 000	Pb	6	10	0.4	20, 185	2×10^{15}
MLF-NNRI	Tokai, Japan	р	3 000	Hg	1000	1000	25	30	1.2×10^{17}
ESS	Lund, Sweden	р	2 000	W	2860	5000	14		
SNS	Oak Ride, USA	р	1000	Hg	700	1400	60		
ISIS-TS1	Oxfordshire, UK	р	800	W	100	240	50		
CSNS	Dongguan, China	р	1600	W		100	25		
NFS	GANIL, Caen, France	d	40	Be	<0.5	2	150k-880k	5-30	

HIGH INTENSITES GAMMA SOURCES IN THE 15 MeV RANGE

 \Rightarrow The proposed scaled implementation setup allows to explore the possibility to implement a neutron source based on **gamma factories**; \Rightarrow There are basically two schemes:

COMPTON SOURCES

collider)

from the same limitations

 \Rightarrow Other schemes can be implemented, suffer

 $\sigma_{\rm IP \ laser} = \sigma_{\rm v \ IP \ e} \left[\mu m \right]$

[D. Alesini et al., IEEE TRANS. ON NUCL.

SC., VOL. 63, NO. 2, APRIL 2016]

 Relatively wide spectrum of the radiation emitted limit the overall efficiency P_{th}/P_{beam} to 10;

SINCHROTRON RADIATION

SINCHROTRON-BASED GAMMA SOURCES

- \Rightarrow Assuming state of the art magnet technology (NbSn₃) at 15 T is possible to calculate the beam energy (E_b) to have a critical energy of the photons from bending/wiggler (E_c) in the range 10-20 MeV;
- \Rightarrow Is possible to compare the **photon spectrum** from a bending magnet with that of a 20mA/100MeV bremsstrahlung radiation.
- \Rightarrow Scaling the parameters we expect for a single magnets a total photon flux of >10¹⁶ n/s.
- \Rightarrow The photon power is limited by the RF system capabilities in term of power and voltage.

SYNCHROTRON-BASED GAMMA SOURCES CONFIGURATIN AND PARAMETERS

~29 MV

Prad=66 kW

TRISTAN (KEK) parameters

Table I: Main paramte	er list of the e⁺e⁻ collider
Circumference	3018 m
Number of electron and	2 + 2
Positron bunches	
Beam energy	25 – 32 GeV
Initial total beam current	14 mA
Nominal RF frequency	508.58 MHz
RF voltage	180 - 500 MV
	(APS/936 cells/310 MV,
	SCC/160 cells/190 MV)
Emittance ratio (ϵ_V / ϵ_H)	1.5 % - 2 %
Beam life time	3–5 hr
Beta-functions at collision	0.04/1.0 m
Point $(\beta *_V / \beta *_H)$	
Beam sizes at collision	8/250 μm
point $(\sigma^*_V \sigma^*_H)$	-
Initial luminosity	$4.5 \times 10^{31} \text{ cm}^{-2} \text{sec}^{-1}$

Volkspark Stadion

HERA

HERA-B

RF CAVITIES VOLTAGE STATE OF THE ART AND R&D ONGOING

Development progress on TS MBK for FCC^{ee}

SRF system options for FCC-ee

FCC Week London, 7 June 2023 Franck Peauger, Olivier Brunner

								(a)
12-May-23	Bare cavity in v	ertical test stand	Jacketed cav couplers in ver	ity with HOM tical test stand	Cryomodule (with test	FPC) in horizontal stand	Operation in t	he machine
	Eacc (MV/m)	Q0	Eacc (MV/m)	Q0	Eacc (MV/m)	Q0	Eacc (MV/m)	Q0
1-cell 400 MHz	6.9	3.3E+09	6.6	3.15E+09	6.3	3.0E+09		2.7E+09
2-cell 400 MHz	13.2	3.3E+09	12.6	3.15E+09	12	3.0E+09	10.8	2.7E+09
5-cell 800 MHz	24.5	3.8E+10	23.3	3.64E+10	22.2	3.5E+10	2010	3.0E+10

12-May-23		Z	w			Н	ttbar2		
	per beam	booster	per beam	booster	2 beams	booster	2 beams	2 beams	booster
RF Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140		1050	2100	2100	2100	9200	11300
Eacc [MV/m]	5.72	6.23	10.61	20.01	10.61	20.76	10.61	20.12	20.10
# cell / cav	1	5		5	2	5	2	5	5
Vcavity [MV]	2.14	5.83	7.95	18.75	7.95	19.44	7.95	18.85	18.83
#cells	56	120		280	528	540	528	2440	3000
# cavities	56	24	132	56	264	108	264	488	600
# CM	<u>14</u>	6	33	14	66	27	<u>66</u>	122	150
+ #CM	14	6	33	8	0	13	0	122	123
- #CM	_	-	14		-	-	-	-	-
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav * [W]	19	0.3	129	3	129	4	129	23	3
stat losses/cav * [W]	8	8	8	8	8	8	8	8	8
Qext	5.8E+04	3.1E+05	9.2E+05	7.6E+06	9.1E+05	1.6E+07	4.5E+06	4.2E+06	8.1E+07
Detuning [kHz]	9.885	4.385		0.140	0.106	0.012	0.009	0.056	0.002
Pcav [kW]	901	210	378	89	382	47	78	163	8
energy loss / turn ** [MV]	39.40	39.40		370.00	1890.00	1890.00	10100	.00	10100.00
cos phi	0.33	0.28	0.35	0.35	0.90	0.90	0.98	0.86	0.89
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.003	0.010	0.010	0.0005
* Heat loads from power couple ** Energy loss / turn from K. Oie	er and HOM couplers r de table Jan. 19, 2023 ONE	RF systen	n per bea	am	co	ommon RF	system fo	r both be	ams

Total of 364 cryomodules, 1456 cavities, 25% with Nb/Cu, 75% with bulk niobium

Zaib Un Nisa (CERN) Igor Syratchev (CERN), Jinchi Cai (UESTC), Graeme Burt (ULAN), <u>Anis</u> Baig (ULAN, CERN)

Design Parameters for TS MBK for FCCee

Parameters	Design Target	КіуС	CST
Frequency (GHz)	0.4	0.4	0.4
Voltage (kV)	58	58	58
First stage (kV)	10-20	11.5	11.5
N beams	10	10	10
Total Current (A)	27	27	27
Output Power (MW)	1.2	1.28	1.2
Efficiency (%)	80	80.6	79
Tube length (m)	<3		2.8

Energy Current

31/05/2022

	Energy (GeV)	Current (mA)	RF voltage (GV)
Z	45.6	1280	0.120
W	80	135	1.05
Н	120	26.7	2.1
ttb	182.5	5	11.3
aber in the b		and the second second second second	

FCC Week 2022

100 MW of RF power in CW (50 MW per ring) to compensate losses by synchrotron radiation

3

OTHER USES OF INTENSE NEUTRON BEAMS (FROM ELECTRON ACCELERATORS)

- \Rightarrow Radiation damage on structural materials for future fusion reactors
 - gas production, due to (n,cp) reactions with threshold of a few MeV
- ⇒ Study possible production routes of **innovative radioisotopes** for therapy and diagnostics (theranostics):
 - 176 Y(n,g)¹⁷⁷Yb (b-decay T_{1/2}=2 h) -> 177 Lu
 - 160 Gd(n,g)¹⁶¹Gd (b-decay T_{1/2}=3 m)-> 161 Tb
 - ⁴⁷Ti(n,p)⁴⁷Sc (to be used in combination with ^{44,43}Sc)
- \Rightarrow Study the effect on electronics of atmospheric neutrons (Singe Event Upset SEU or Single Event Error SEE) for various applications:
 - aerospace, industrial automation, medical devices, automotive electronics, communication infrastructures, etc...
- ⇒ Study **neutron damage to electronics in the high neutron field environment** of particle accelerators (intermediate energy) and fusion reactor (such as ITER control and monitoring systems).
- ⇒ Neutron imaging (or radiography) for fossils and cultural heritage

7, e, OH., OH

e : Electro

DNA

🐞 : GdNCT agen

CONCLUSIONS

- ⇒ Perspectives and limits of electron based neutron sources for nuclear applications have been illustrated
- ⇒ A small scale experimental linear accelerator (<100 MeV, 2-4 mA, CW, 100-400 kW) would allow to study, in scale, neutron properties, targets, gamma-based neutron sources with other possible applications (medical, irradiation, spectroscopy,...)
- ⇒ A **full study** of a small scale accelerator driven reactor has still to be done: beam+target+fuel
- ⇒ Synchrotron based neutron sources are large scale facilities that, in principle, allow to implement multiple target stations for a large scale nuclear power plant and/or neutron facility:
 - Accelerator design, magnets, synchrotron light interaction with target are all topics to be studied
 - Strong synergies with future linear collider developments; cavities, rf power sources,
 - It is a real, feasible, possible implementation with state of the art acceleratori and magnet technology

THANK YOU FOR YOUR ATTENTION!