R&D di acceleratori per applicazioni energetiche ai LNS

Giuseppe Torrisi, INFN-LNS

2. Magnetic plasma-lon Sources for ADS and plasma-traps for fusion

3. Laser-cluster scenario and Polarized nuclear fusion fuel

- Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction → [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm²)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in <u>Inertial Confinement Fusion (ICF</u>) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
- Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor</u> (CBFR) [MICRON_GrV, SAMOTHRACE WP1]
- Micro-glass capillaries for μ-Beam irradiation and analysis of *fusion plasma-facing materials and components* [SAMOTHRACE WP2]

2. Magnetic plasma-lon Sources and plasma-traps

3. Laser-cluster scenario and Polarized nuclear fusion fuel:

- Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction → [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm²)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in <u>Inertial Confinement Fusion (ICF</u>) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
- Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
- Micro-glass capillaries for µ-Beam irradiation and analysis of *fusion plasma-facing materials and components* [SAMOTHRACE WP2]

2. Magnetic plasma-Ion Sources and plasma-traps :

- R&D High intensity ECR/MDIS proton source for ADS [TRASCO, TRIPS, PS-ESS] driving a subcritical reactor to transmute nuclear waste
- **R&D on Diagnostics:** soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
- Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas through Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
- Stopping power investigation for magnetic confinement fusion (MCF) plasma
- New generation plasma chambers and resonators for compact reactors: Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS_Gr5 and IRIS2.0 POC MISE]

3. Laser-cluster scenario and Polarized nuclear fusion fuel

- Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction → [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm²)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in <u>Inertial Confinement Fusion (ICF</u>) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
- Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor</u> (CBFR) [MICRON_GrV, SAMOTHRACE WP1]
- Micro-glass capillaries for µ-Beam irradiation and analysis of *fusion plasma-facing materials and components* [SAMOTHRACE WP2]

2. Magnetic plasma-Ion Sources and plasma-traps :

- R&D High intensity ECR/MDIS proton source for ADS [TRASCO, TRIPS, PS-ESS] driving a subcritical reactor to transmute nuclear waste
- **R&D on Diagnostics:** soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
- Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas through Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
- Stopping power investigation for magnetic confinement fusion (MCF) plasma
- New generation plasma chambers and resonators for compact reactors: Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS_Gr5 and IRIS2.0 POC MISE]

3. Laser-cluster scenario and Polarized nuclear fusion fuel:

- The Coulomb Explosion Paradigma for the enhancement in the yield of reaction products [ASFIN]
- Innovative sources and systems, theory and experiments for fusion from polarized nuclei [VALAR]

SAMOTHRACE: the ECOSYSTEM

SiciliAn Micro and nanO TecHnology Research and innovAtion Center

Samothrace Ecosystem: The Structure

INFN

S. Tudisco, INFN

PILLAR ENERGY

TOPIC-AREA:Devices for production/conversion of energy from renewables sourceDevices and diagnostics sensors for fusion energy

Pillar	Coordinators	Affiliation
Health	Sabrina Conoci, Cesare Scardulla,	UNIME UPMC
Smart Agriculture	Sebania Libertino Simona Consoli	CNR UNICT
Smart Mobility	Gaetano Palumbo Filippo di Giovanni (Antonio Imbruglia)	UNICT STMicroelectronics
Energy	David Mascali Alessandra Alberti	INFN CNR
Environment	Francesca D'Anna Giuliana Impellizzeri	UNIPA CNR
Cultural Heritage	Anna Gueli Delia Chillura Martino	UNICT UNIPA
Route2Innovation	Francesca Tosato	Quantum Leap
	Filippo D'Arpa Sebastiano Distefano	DTMNS PSTS
	(Francesco Cappello)	PSTS

SiciliAn Micro and nanO TecHnology Research and innovAtion Center

Spoke 5 organization

Work package

- WP1. Micro accelerators for Health and Energy
- WP2. Micro e Nano beams for Health and Energy
- WP3. Photodetectors and digital ACQ for Environment, Agritech, Health
- WP4. Detectors for particle therapy, Health
- WP5. Diagnostics and technologies for Fusion Power, Energy

SiciliAn Micro and nanO TecHnology Research and innovAtion Center

Samothrace – ECS_00000022

UniPA

UniCT

S. Tudisco – ETS meeting, Feb 15th 2024

- Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction → [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - <u>Proton-boron fusion reaction in plasma</u>: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
- Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
- Micro-glass capillaries for µ-Beam irradiation and analysis of *fusion plasma-facing materials and components* [SAMOTHRACE WP2]

. Magnetic plasma-ion sources and plasma-traps :

- R&D High intensity ECR/MDIS ion source for ADS [TRASCO, PS-ESS]
- R&D on Diagnostics: soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
- Stopping power investigation in plasma for magnetic confinement fusion (MCF) plasma
- Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
- New generation plasma chambers and resonators for compact reactors Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS and IRIS2.0 POC MISE]

3. Polarized nuclear fusion fuel:

Innovative sources and systems, theory and experiments for fusion from polarized nuclei

- Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction → [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - *Proton–boron fusion reaction in plasma*: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - Stopping power in warm dense matter: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design
 - [FUSION_GrV, SAMOTHRACE WP1].

Laser-driven ion acceleration

The energy gain for ions in a laser-plasma accelerator is of several tens of MeV/µm (just few tens of MeV/m in conventional accelerators due to breakdown effects) Protons and ions (up to 100 MeV), electrons (up to 8 GeV), gammas, neutrons

Workshop Transizione Energetica

(INFN-E e INFN-A) 21–22 Feb 2024 INFN Laboratori Nazionali del Sud I-LUCE - INFN - Laser indUCEd radiation production

An high-power (up to 0.5 PW), ultra-short (down to 23 fs) Ti:Sa laser will provide two laser outputs

- 45TW/23fs/10Hz
- 0.5PW/23fs/3Hz

Pulse duration can be scaled down to 500fs (with compressor) and ns scale level with a consequently variation on laser intensity

Lasers will be directed towards two different experimental areas E1 and E2

Laser/plasma and ions: world almost unique environment

I-LUCE layout

GAP Cirrone, PhD - pablo.cirrone@lns.infn.it

An irradiation point for fusion studies

An high power laser: 8J/23fs/1Hz A plasma generated by the laser: Temperature: 2 eV - 200 eV Density: 10²⁵ m⁻³ Ion beams in a wide Z range and energy up to 70 AMeV provided by the TANDEM and Cyclotron accelerators

E2 will allow for studies in the inertial confinement regime

Laser/plasma and ions: world almost unique environment

$$npprox rac{I}{e^2T}$$

$$Tpprox \left(rac{I}{1.37 imes 10^{16}\,{
m W/cm}^2}
ight)^{1/2}$$

High-power modality: 500TW/3Hz

Main radiations

Laser main parameters

Laser Power	500 TW
Energy per pulse	>10 J
Pulse duration	≤ 25 fs
Focusing surface	$36 \mu m^2$ or better
Max power density (at the target)	1.33·10 ²¹
Ι* λ ²	8.5·10 ²⁰
Contrast ratio @100 ps (ASE)	> 10 ¹⁰
Repetition rate	3 Hz

	Max energy	70 MeV		
Protons Ions	Particle per pulse (at 30 MeV)	1(10 ¹¹ MeV ⁻¹ Sr ⁻¹	
	Energy spread	100%		
	Beam divergency (max)	±2	±20°	
	Max energy	3	3 GeV	
Eletrons	Particles per pulse	1(10 ⁹	
	Beam divergency (max)	± 20 mad		
	Particles per pulse		10 ¹⁰	
Neutrons	Energy spread		100	
	Beam divergency		Isotropic	
Synchrotron radiation of the electrons inside the plasma or breemsstrahlungGamma X- beamsEnergy			up to 80 MeV Directionality in the beam	

GAP Cirrone, PhD - pablo.cirrone@lns.infn.it

Nuclear physics mid-term plan

Positrons generation

Protons and electrons generation

Chapter 6.2 Laser applications

Eur. Phys. J. Plus (2023) 138:1038 https://doi.org/10.1140/epip/s13360-023-04358-7 Regular Article

Nuclear physics midterm plan at LNS

C. Agodi¹, F. Cappuzzello^{1,2}, G. Cardella³, G. A. P. Cirrone¹, E. De Filippo³, A. Di Pietro¹, A. Gargano⁴, M. La Cognata^{1,a}, D. Mascali¹, G. Milluzzo¹, R. Nania⁵, G. Petringa¹, A. Pidatella¹, S. Pirrone³, R. G. Pizzone¹, G. G. Rapisarda^{1,2,b}, M. L. Sergi^{1,2}, S. Tudisco¹, J. J. Valiente-Dobón⁷, E. Vardaci^{4,8}, H. Abramczyk⁹, L. Acosta¹⁰, P. Adsley¹¹, S. Amaducci¹, T. Banerjee⁴, D. Batani¹², J. Bellone^{1,2}, C. Bertulani^{11,13}, S. Biri¹⁴, A. Bogachev¹⁵, A. Bonanno^{1,16}, A. Bonasera^{1,11}, C. Borcea¹⁷, M. Borghesi¹⁸, S. Bortolussi^{19,20}, D. Boscolo¹⁴, G. A. Brischetto^{1,2}, S. Burrello^{1,21,22}, M. Busso^{23,24}, S. Calabrese¹, S. Calinescu¹⁷, D. Calvo²⁵, V. Capirossi^{25,26}, D. Carbone¹, A. Cardinali²⁷, G. Casini²⁸, R. Catalano¹, M. Cavallaro¹, S. Ceccuzzi²⁹, L. Celona¹, S. Cherubini^{1,2}, A. Chieffi^{24,30}, I. Ciraldo^{1,2}, G. Ciullo^{31,32}, M. Colonna¹, L. Cosentino¹, G. Cuttone¹, G. D'Agata^{1,2}, G. De Gregorio^{4,33}, S. Degl'Innocenti³⁴, F. Delaunay^{1,2,35}, L. Di Donato^{1,36}, A. Di Nitto^{4,8}, T. Dickel^{37,38}, D. Doria^{17,39}, J. E. Ducret⁴⁰, M. Durante¹⁴, J. Esposito⁷, F. Farrokhi¹, J. P. Fernandez Garcia²¹, P. Figuera¹, M. Fisichella¹, Z. Fulop¹⁴, A. Galatá⁶, D. Galaviz Redondo⁴¹, D. Gambacurta¹, S. Gammino¹, E. Geraci^{2,3}, L. Gizzi⁴², B. Gnoffo^{2,3}, F. Groppi^{26,27}, G. L. Guardo¹, M. Guarrera¹, S. Hayakawa⁴³, F. Horst¹⁴, S. Q. Hou⁴⁴, A. Jarota⁸, J. José⁴⁵, S. Kar^{18,46}, A. Karpov¹⁵, H. Kierzkowska-Pawlak⁹, G. G. Kiss¹⁴, G. Knyazheva¹⁵, H. Koivisto⁴⁷, B. Koop⁷², E. Kozulin¹⁴, D. Kumar^{37,38}, A. Kurmanova¹, G. La Rana^{4,8}, L. Labate⁴², L. Lamia^{1,2}, E. G. Lanza³, J. A. Lay^{48,49}, D. Lattuada^{1,6}, H. Lenske⁵⁰, M. Limongi^{24,30,51}, M. Lipoglavsek⁵², I. Lombardo^{2,3}, A. Mairani⁷², S. Manetti^{26,27}, M. Marafini⁷¹, L. Marcucci³⁴, D. Margarone⁵³, N. S. Martorana^{1,3}, L. Maunoury⁴⁰, G. S. Mauro¹, M. Mazzaglia¹, S. Mein⁷², A. Mengoni^{5,54}, M. Milin⁵⁵, B. Mishra¹, L. Mou⁷, J. Mrazek⁵⁶ P. Nadtochy⁵⁷, E. Naselli¹, P. Nicolai¹², K. Novikov¹⁵, A. A. Oliva⁷, A. Pagano³, E. V. Pagano¹, S. Palmerini^{23,24}, M. Papa³, K. Parodi⁷³, V. Patera⁵⁸, J. Pellumaj^{7,31}, C. Petrone²⁴, S. Piantelli²⁸, D. Pierroutsakou⁴, F. Pinna²⁵, G. Politi^{2,3}, I. Postuma^{19,20}, P. Prajapati^{1,59}, P. G. Prada Moroni³⁵, G. Pupillo⁷, D. Raffestin¹², R. Racz¹⁴, C.-A. Reidel¹⁴, D. Rifuggiato¹, F. Risitano^{3,60}, F. Rizzo^{2,3}, X. Roca Maza^{61,62}, S. Romano^{1,2}, L. Roso⁶³, F. Rotaru¹⁷, A. D. Russo¹, P. Russotto¹, V. Saiko¹⁵, D. Santonocito¹, E. Santopinto⁶⁴, G. Sarri⁴⁶, D. Sartirana²⁵, C. Schuy¹⁴, O. Sgouros¹, S. Simonucci⁶⁵, G. Sorbello^{1,36}, V. Soukeras¹, R. Spartá¹, A. Spatafora^{1,2}, M. Stanoiu¹⁷, S. Taioli^{66,67,68}, T. Tessonnier⁷ P. Thirolf⁷³, E. Tognelli³⁴, D. Torresi¹, G. Torrisi¹, L. Trache¹⁷, G. Traini⁷⁰, M. Trimarchi^{3,60}, S. Tsikata⁶⁹, A. Tumino^{1,6}, J. Tyczkowski⁹, H. Yamaguchi⁴³, V. Vercesi^{19,20}, I. Vidana³, L. Volpe⁶³, U. Weber¹⁴

¹ Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, 95123 Catania, Italy ² Dipartimento di Fisica e Astronomia "Ettore Majorana", University of Catania, 95123 Catania, Italy ³ Sezione di Catania, Istituto Nazionale di Fisica Nucleare, 95123 Catania, Italy ⁴ Sezione di Napoli, Istituto Nazionale di Fisica Nucleare, 80126 Napoli, Italy ⁵ Sezione di Bologna, Istituto Nazionale di Fisica Nucleare, 40127 Bologna, Italy ⁶ Facoltà di Ingegneria e Architettura, Università degli Studi di Enna "Kore", 94100 Enna, Italy ⁷ Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, 35020 Legnaro, Italy ⁸ Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, 80126 Napoli, Italy ⁹ Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland ¹⁰ Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico City, Mexico ¹¹ Cyclotron Institute, Texas A &M University, College Station, TX 77840, USA 12 Centre Lasers Intenses et Applications (CELIA), University of Bordeaux, 33400 Talence, Bordeaux, France 13 Department of Physics and Astronomy, Texas A &M University-Commerce, Commerce, TX 75429-3011, USA 14 Atomki, Institute of Nuclear Research, 4026 Debrecen, Hungary 15 Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia 141980 ¹⁶ Osservatorio Astrofisico di Catania, INAF, via S.Sofia 78, 95123 Catania, Italy 17 IFIN-HH "Horia Hulubei", National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania ¹⁸ School of Mathematics and Physics, Centre for Plasma Physics, Oueen's University, Belfast, Northern Ireland BT7 1NN, UK ¹⁹ Dipartimento di Fisica, Università degli Studi di Pavia, Via Agostino Bassi, 6, 27100 Pavia, Italy ²⁰ Sezione di Pavia, Istituto Nazionale di Fisica Nucleare (INFN), Via Agostino Bassi, 6, 27100 Pavia, Italy ²¹ Departamento de Física Atómica Molecular y Nuclear, University of Seville, 41012 Sevilla, Spain ²² Fachbereich Physik, Institut f
ür Kernphysik, Technische Universit
ät Darmstadt, 610101 Darmstadt, Germany ²³ Dipartimento di Fisica e Geologia, Università di Perugia, 06125 Perugia, Italy ²⁴ Sezione di Perugia, Istituto Nazionale di Fisica Nucleare, 06125 Perugia, Italy 25 Sezione di Torino, Istituto Nazionale di Fisica Nucleare, 10125 Torino, Italy 26 DISAT, Politecnico di Torino, 10129 Torino, Italy 27 FSN Department, ENEA, DTT S.C.a r.l., 00044 Frascati, Italy ²⁸ Sezione di Firenze, Istituto Nazionale di Fisica Nucleare, 50019 Sesto Fiorentino (Fi), Italy 29 ENEA, DTT S.C.a r.l., 00044 Frascati, Italy

Why the p-¹¹B fusion reaction?

1 8 $p(11B, \alpha)$ 8Be $p(11B, \alpha$

- Neutronless fusion reactions
- Two resonance at 148 keV and 580 keV in the system center of mass
- It is considered as a **potential candidate** in inertial fusion scheme
- Reagents more abundant in nature with respect to other fusion reactions of interest, and easier to handle (with respect to tritium, for example)
- Interest for the realisation of intense α sources for applications

M.Oliphant, L.Rutherford, Proc. R. Soc. London A 141 259 (1933)

FUSION: an INFN project to study the p-11B fusion reaction

New targets, diagnostics and irradiation schemes for p11B fusion reaction in plasma and in catcher configuration

ENEL TIFS

- Protons and alphas stopping powers measurements in plasma
- PIC and hydrodinamic simulation to predict the emission

Stopping power of ions in plasma is a process of fundamental importance in many applications:

- Inertial Confinement Fusion
- Astrophysics and Nuclear Astrophysics
- High-energy Density Physics
- Plasma strippers

Ο

Ο

Solid State Physics

 □ High-energy ν_p ≫ ν_{th} > The stopping power (energy deposited per unit length) of the ions in the plasma can be described by perturbative approaches based on a first Born approximation > Most stopping experiments can be interpreted within the SSM frame 	 □ Low-energy v_p ≈ v_{th} ○ The ion-plasma interaction involves both strong collisions and collective plasma excitations, and the coupling between the projectile and the plasma is maximal ○ Large discrepancies appear between the various theories, reaching up to 30-50 % between perturbative predictions and data from nonperturbative approaches
--	---

Characterization of ions stopping power in plasma at I-LUCE facility

Collaboration: C. Altana, G. Castro, S. Cavallaro, C. Ciampi, G.A.P. Cirrone, R. De Angelis, S. De Luca, G. Lanzalone, L. Malferrari, F. Odorici, L. Palladino, G. Pasquali, A. Russo, A. Trifirò and S. Tudisco

Partecipating INFN sections:Catania, LNS, LNGS, Bologna, Firenze

Proposed Setup at I-LUCE facility

LNS has the only possibility, together with GSI, to deliver a beam with low energy by Tandem accelerator that cross a plasma plume generated under vacuum by a laser beam interacting with a solid target.

Activities at INFN-LNS

- INFN FUSION project financed by the INFN Committee V
- * Cost Action

<u>PROBONO</u>: PROtonBOron Nuclear fusion: from energy production to medical applicatiOns

EP 2 833 365 A1 - reaction scheme EP3266470A1 - medical applications HiPER+ initiative for Inertial Confinements Fusion (ICT) studies 18 Institutes INFN- LNS associated partner GSİ Additional countries HZDF covered by Assoc. partners CNrs 🔘 IFPil M RIFN-GV CLPU ENEN INEN nsiglio Nazion

Involvement in WP3 (Task 32.2)

Modelling of protons and alpha stopping power in plasma will be performed with the Geant4 Monte Carlo code with a module dedicated to the simulation of the interaction of 3.5 MeV alphas in plasma

Involvement in WP7

To make the I-LUCE facility available for future studies in the laser-plasma environnement

- Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction → [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA
 - 2) Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - *Proton-boron fusion reaction in plasma*: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
- Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
- Micro-glass capillaries for µ-Beam irradiation and

. Magnetic plasma-ion sources and plasma-traps :

- R&D High intensity ECR/MDIS ion source for ADS
- R&D on Diagnostics: soft-X and hard X spectrosco reactors (TOKAMAK). Reflectometers/interferometers
- Stopping power investigation in plasma for magnetic
- Wave propagation/absorption in fusion plasmas: thermonuclear fusion plasmas thriugh Ion Cyclotron
- New generation plasma chambers and resonators advanced plasma chambers ensuring better radiation

3. Polarized nuclear fusion fuel:

Innovative sources and systems, theory and expe

facing materials and components [SAMOTHRACE WP2]

udy of magnetized plasmas for fusion in compact traps and [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5] | plasma

ment of antennas and systems for the excitation and control of n Cyclotron Heating (ECH) [DTT]

sign, numerical investigation and experimental tests of , control and confinement [*IRIS and IRIS2.0 POC MISE*]

INFN

olarized nuclei

MICRON_Gr5 Experiment: Optical Integrated DIELECTRIC LASER ACCELERATOR (DLA) useful as compact/cheap demo for CBFR

high-Q photonic-crystal cavity. (Courtesy of C2N)

cost-effectiveandportabledielectricparticleacceleratorinatable-topconfiguration

- based on low-cost, **mass production micro-optical chips** driven by **solid state laser**
- **10X higher accelerating gradient** with respect to metallic conventional RF LINAC

Many DLA structures

MICRON_Gr5 Experiment: Optical Integrated DIELECTRIC LASER ACCELERATOR (DLA) useful as compact/cheap demo for CBFR

Potential applications for Aneutronic fusion reaction p-11B in <u>Colliding Beam Fusion Reactor (CBFR)</u> [BNL-48642 "Nuclear Fusion of Protons with Ions of Boron", Alessandro G. Ruggiero Brookhaven National Laboratory]

Two beams of ions are fired into this reactor, one of protons (red, upper left) and one of boron-11 nuclei (red/blue, upper right). Neutrons are blue here. The magnetic compression of the gas allows these to fuse into helium-4 nuclei (left and right), with the production of energy. This reaction is advantageous as it does not produce neutrons

- Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction → [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA
 - Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
- Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
- Micro-glass capillaries for µ-Beam irradiation and analysis of *fusion plasma-facing materials and components* [SAMOTHRACE WP2]

21–22 Feb 2024 INFN Laboratori Nazionali del Sud

The transmission of MeV ions is due by scattered ions on the inner walls.

The microbeam line based on glass microcapillaries

MOTIVATION: Plasma-wall interactions (PWI) in controlled fusion devices with magnetic confinement need for detailed material analyses and for experimental simulation of radiation- induced damage

Detailed mapping of species with a resolution of 1-30 μm can be carried out with μ-RBS, μ-NRA, μ-EPS and μ-PIXE, i.e. using micro-beams formed in a quadrupole-equipped beamline or MICRO-CAPILLARIES

MAIN TOPICS COLLECTED [and reference experiments]

1. New Acceleration schemes @LNS

Magnetic traps for hot plasmas excited by e.m. waves

Laser-driven plasma-based acceleration (e-, lors) and nuclear reactions (activation, transmutation, fission and fusion process pased on laser-matter interaction \rightarrow [I-LUCE (INFN-Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ V Particle acceleration)

Micro-glass capillaries for µ-Beam irradiation and analysis of fusion plasma-facing materials and components [SAMOTHRACE WP2]

2. Magnetic plasma-ion sources and plasma-traps :

- R&D High intensity ECR/MDIS proton source for ADS [TRASCO, PS-ESS] driving a subcritical reactor to transmute nuclear waste
- **R&D on Diagnostics:** soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
- Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
- Stopping power investigation for magnetic confinement fusion (MCF) plasma
- New generation plasma chambers and resonators for compact reactors: Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS_Gr5 and IRIS2.0 POC MISE]

3. Laser-cluster scenario and Polarized nuclear fusion fuel:

- The Coulomb Explosion Paradigma for the enhancement in the yield of reaction products [ASFIN]
- Innovative sources and systems, theory and experiments for fusion from polarized nuclei [VALAR]

The TRASCO LINAC (1GeV, 30 mA, CW)

Source	RFQ	ISCL	High Energy SC Linac
Microwave RF Source High current (35 mA) 80 keV	High transmission 95% 30 mA, 5 MeV (352 MHz)	5 - 100 MeV SC linac Baseline design: Reentrant cavities (352 MHz) Alternative design: $\lambda/2$, $\lambda/4$ 8 $\beta\lambda$ FODO focussing with sc magnets	3 section linac: - 100 - 190 MeV, β=0.47 - 190 - 450 MeV, β=0.65 - 450 - 1000/(1600) MeV, β=0.85 Five(six) cell elliptical cavities Quadrupole doublet focussing: multi-cavity cryostats between doublets - (352.2 MHz CERN/LEP) - 704.4 MHz

The TRASCO–AC Group, Status of the high current proton accelerator for the TRASCO program. Report No. INFN/TC-00/23

TRIPS (TRasco Intense Proton Source)

Proton beam current: 35 mA dcBeam Energy: 80 keVBeam emittance: $\varepsilon_{RMS} \leq 0.2 \pi \text{ mm mrad}$ Reliability: close to 100%

Jan. 2001: completed

R. Gobin, R. Ferdinand, L.Celona, G. Ciavola, S. Gammino, Rev.Sci.Instr. 70(6),(1999), 2652

P—Y. Beaubais, R. Gobin, R. Ferdinand, L.Celona, G. Ciavola, S. Gammino, J. Sherman Rev.Sci.Instr. 71,(2000), 1413

L.Celona, G. Ciavola, S. Gammino, F. Chines, R. Gobin, R. Ferdinand, Rev.Sci.Instr. 75(5),(2004), 1423

Space charge compensation and emittance decrease

LNS contribution		Requirement	Status
to TRASCO:	Beam energy	80 keV	80 keV
	Proton current	35 mA	55 mA
First test of a	Proton fraction	>70%	80% at 800 W RF power
proton source with the long term		2 kW (max) @2.45 GHz	Up to 1 kW @ 2.45 GHz
reliability needed	Axial magnetic field	875-1000 G	875-1000 G
for ADS	Duty factor	100% (dc)	100% (dc)
	Extraction aperture	8 mm	6 mm
	Reliability	≈100%	99.8% @ 35mA (over 142 h)
	Beam emittance at RFQ entrance	≤0.2 πmmmrad	0.07÷0.20 πmmmrad

L.Celona, G. Ciavola, S. Gammino, F. Chines, R. Gobin, R. Ferdinand, Rev.Sci.Instr. 75(5),(2004), 1423

VIS ion source description

PS-ESS: two decades of R&D towards high reliability, easy operation, reproducibility

2018, Feb. 1st - Source fully assembled in Lund by INFN-LNS team (4 weeks for the disassembly in Catania, less than 3 weeks for assembly phase in Lund)

Beam characterization

Emittance: 1.06 π.mm.mrad (< 1.8) Max divergence: 55 mrad (< 80)

Proton Fraction: 83% (> 75%)

Source nominal configuration

109 A coil1; 67 A coil2; 228 A coil3; 3.75 SCCM H₂

Proton current range 67-74 mA SATISFIED

High Stability Microwave Discharge Ion Sources: a new frontier just disclosed

All super stable configurations present a particular magnetic field shape. Deep analysis of the involved physics is under way.

L. Neri, L.Celona, Rev.Sci.Instr. 70(6),(1999), 2652

Efforts at LNS since 10-15 years to make an innovation of research goals, methods, instruments \rightarrow **use** of plasmas for fundamental science and applications

From a laboratory ECR "Plasma star" to...

INFN

In the frame of the **PANDORA** project an **innovative multi-diagnostic approach** to correlate plasma parameters to nuclear activity has been proposed. This is based on several detectors and non-invasive techniques (*Optical Emission Spectroscopy, RF systems, InterferoPolarimetry, time- and space-resolved X-ray spectroscopy*),

allowing **detailed investigations of magnetoplasma properties**.

Diagnostic tool	Sensitive Rang	e Measurement	Resolution - Measure Error
SDD	1 ÷ 30 keV	Volumetric soft X-ray Spectroscopy:	Resolution ~ 120 eV
		warm electrons temperature and density	$\epsilon_{ne} \sim 7\%$, $\epsilon_{Te} \sim 5\%$
HPGe detector	30 ÷ 2000 keV	Volumetric hard X-ray Spectroscopy:	FWHM @ 1332.5 keV < 2.4 keV
		hot electrons temperature and density	$\epsilon_{ne} \sim 7\%$, $\epsilon_{Te} \sim 5\%$
Visible Light Camera	1 ÷ 12 eV	Optical Emission Spectroscopy:	$\Delta \lambda = 0.035 \text{ nm}$
		cold electrons temperature and density	R = 13900
X-ray pin-hole camera	2 ÷ 15 keV	2D Space-resolved spectroscopy:	Energy Resolution ~ 0.3 keV
		soft X-ray Imaging and plasma structure	Spatial Resolution ~ 0.5 mm
W-band super-heterodyne		Plasma-induced Faraday rotation:	ε _{ne} ~ 25%
polarimeter	90 ÷ 100 GHz	line-integrated electron density	
Microwave Imaging	60 ÷ 100 GHz	Electron density profile	εne~1% ÷ 13%
Profilometry (MIP)			
Multi-pins RF probe	10 ÷ 26.5 GHz	Local EM field intensity	$\pmb{\epsilon} \sim 0.073 \div 0.138 \; dB$
Multi-pins RF probe +	10 ÷ 26.5 GHz	Frequency-domain RF wave	SA Resolution bandwidth:
Spectrum Analyzer (SA)	(probe range)		RBW = 3 MHz
Multi-pins RF probe +	10 ÷ 26.5 GHz	Time-resolved radiofrequency burst	80 Gs/s (scope)
Scope + HPGe detector	(probe range)	and X-ray time-resolved Spectroscopy	time scales below ns
Thomson Scattering	0.5 ÷ 500 eV	EEDF, absolute electron density global electron drift velocity	Condition-dependent
			function of spectral widt
			dependent on temperature, ar
			area, dependent on density)
			CINF
lution		Wor	kshop Transizione Energet
aging			(INFN-E e INFN-A)
····8····8			21–22 Feb 2024

INFN Laboratori Nazionali del Sud

Plasma system scenarios

The system was designed to be tested on the <u>PANDORA plasma trap (C)</u> which represents an "*intermediate*" case between the ultra-compact plasma ion sources (<u>FPT (B)</u> and <u>Test-bench (A)</u>) and the large-size thermonuclear <u>Fusion devices (D)</u>.

<u> Test-Bench (without plasma)</u>

WP5 Detectors and Technologies for Fusion Power

Development of X-ray detectors:

- New SiC/GaN sensors for X-ray detection;
- High resolution X-ray CCD pin-hole system for plasma imaging and spatiallyresolved spectroscopy;

"Live" X-ray imaging of plasma emission

Sub-THz interferopolarimetry:

• new polarimetric system for the line-integrated electron density measurement, based on the detection of Lissajous figure by means of a Super-heterodine scheme;

Detection the Lissajous figure from a **two channels scope** of a direct probing RF signals crossing the magnetoplasma

Rotation of the Lissajous figures in freespace (rotating the RX antenna) and with polarizer (for different polarizer angles)

Flexible Plasma Trap @ LNS

It can be considered as a test-bench for the development of diagnostics, heating systems, etc.

INFN

- 1. New Acceleration schemes @LNS
 - Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction \rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
 - Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
 - Micro-glass capillaries for µ-Beam irradiation and analysis of *fusion plasma-facing materials and components* [SAMOTHRACE WP2]

2. Magnetic plasma-ion sources and plasma-traps :

- R&D High intensity ECR/MDIS ion source for ADS [TRASCO, PS-ESS]
- R&D on Diagnostics: soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
- Stopping power investigation in plasma for magnetic confinement fusion (MCF) plasma
- Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
- New generation plasma chambers and resonators for compact reactors Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS and IRIS2.0 POC MISE]

3. Polarized nuclear fusion fuel:

Innovative sources and systems, theory and experiments for fusion from polarized nuclei

- 1. New Acceleration schemes @LNS
 - Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction \rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA
 - 2) Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
 - Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
 - Micro-glass capillaries for µ-Beam irradiation and analysis of fusion plasma-facing materials and components [SAMOTHRACE WP2]

2. Magnetic plasma-ion sources and plasma-traps :

- R&D High intensity ECR/MDIS ion source for ADS [TRASCO, PS-ESS]
- R&D on Diagnostics: soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
- Stopping power investigation in plasma for magnetic confinement fusion (MCF) plasma
- Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
- New generation plasma chambers and resonators for compact reactors Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS and IRIS2.0 POC MISE]

3. Polarized nuclear fusion fuel:

Innovative sources and systems, theory and experiments for fusion from polarized nuclei

In-plasma research

- *B-dacays* in plasmas
- Plasma heating by EBWs
- multiple frequency heating effects
- **Cyclotron maser** instability

stituto Nazionale di Fisica Nucleari Laboratori Nazionali del Sud

- Supporting **design of new ion sources**
- Modelling wave-plasma interaction in the ECR domain
- **Design of ICH antennas** for ECR devices
- Supporting development of diagnostics (interferopolarimetry+Xray)

- Contribution to ICH-task by supporting antenna design and plasma simulations (use of full-wave code)
- Preliminary use of waveoptics tools to support interferopolarimetry
- **Profilometry** by inverse scattering approach

lon

Sources

Theoretical study of electromagnetic propagation and related absorption mechanisms in magnetized plasmas for laboratory (fusion) and compact traps in several frequency range (AW, IC, LH, EC)

- Solution of the electromagnetic dispersion relation in the complex domain of the wave-vector^{*} (at fixed frequency), resulting from the **Maxwell-Vlasov equation system for magnetized plasmas**
 - Wave propagation
 - Wave spatial damping
- Solution of the electromagnetic Integro-Differential Maxwell-Vlasov equation system for magnetized plasmas in Cartesian and Toroidal geometry with BC established by external antennas at fixed frequency[°]
 - Distribution of the electromagnetic field inside the plasma
 - RF Power Deposition Profiles inside the plasma
- Solution of the 2D (in velocity space) Fokker-Planck equation with a quasi-linear diffusion term due to the RF wave^{*°}
 - Determination of the ion/electron distribution function under the action of electromagnetic field
 - Characterization of a fast ion/electron tail of the distribution function and consequences on wave destabilization

*A. Cardinali, DisEMag, FokPlanck numerical codes ° M. Brambilla, FELICE, TORIC, SSFPQL numerical codes CINFN

Workshop Transizione Energetica

(INFN-E e INFN-A) 21–22 Feb 2024

INFN Laboratori Nazionali del Sud

INFN-DTT at LNS

As a spin-off of R&D on plasma heating and diagnostics, <u>now</u> <u>coordinating LNS contribution</u> to Ion Heating, interferopolarimetry and X-ray measurements

250 GHz

600 GHz

2 2.5

1.5

Sub-task:

Interferopolarimetry

1.5 2 2.5 3 .

ICH Antenna Conceptual Design

Sub-task:

Soft X-ray diagnostics (imaging and tomography)

ICH Antenna DESIGN

Divertor Tokamak Test Design of the **ICH Antenna**

ECH Waveguides Design

Overall view from the mounting flange connection side with the centering system **Cooling and mounting/interfaces**

- 1. New Acceleration schemes @LNS
 - Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction \rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
 - Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
 - Micro-glass capillaries for µ-Beam irradiation and analysis of fusion plasma-facing materials and components [SAMOTHRACE WP2]

2. Magnetic plasma-ion sources and plasma-traps :

- R&D High intensity ECR/MDIS ion source for ADS [TRASCO, PS-ESS]
- R&D on Diagnostics: soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
- Stopping power investigation in plasma for magnetic confinement fusion (MCF) plasma
- Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
- New generation plasma chambers and resonators for compact reactors Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS and IRIS2.0 POC MISE]

3. Polarized nuclear fusion fuel:

Innovative sources and systems, theory and experiments for fusion from polarized nuclei

Innovative

lon Source

INFN Partners LNS, LNL **EU Partners** ATOMKI-Debrecen (Hungary) Jyvaskyla University (Finland) **Industrial Partners** UMAS Technology DB-Science

IRIS is a project supported by INFN through the competitive Grant n.73 (after 2016 selection -7^{th} in the final ranking over >500 participants)

fabricated by Additive **Manufacturing Technology**

International patent pending N. PCT/IB2021/050696 // (E0130645) BRE-sz

Breaking cylindrical symmetry

Innovative Resonator Ion Source (IRIS)

plasma shape

new shape (front view)

Stationary PIC simulations: Energy

Additive manufacturing (AM) 3D printing IRSI towards 1:1 prototype

- 1. New Acceleration schemes @LNS
 - Laser-driven plasma-based acceleration (e-, lons) and nuclear reactions (activation, transmutation, fission and fusion processes) based on laser-matter interaction \rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ W/cm2)]:
 - 1) Electron acceleration by Laser Wake Field Acceleration (LWFA)
 - 2) Ion acceleration by Target Normal Sheath Acceleration (TNSA) at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
 - Proton-boron fusion reaction in plasma: for future advanced fusion ignition schemes and for laser-driven α particles sources;
 - <u>Stopping power in warm dense matter</u>: important issue/property in Inertial Confinement Fusion (ICF) implosion study and design [FUSION_GrV, SAMOTHRACE WP1].
 - Dielectric Laser Accelerator (DLA) on chip based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on <u>Colliding Beam Fusion reactor (CBFR)</u> [MICRON_GrV, SAMOTHRACE WP1]
 - Micro-glass capillaries for µ-Beam irradiation and analysis of fusion plasma-facing materials and components [SAMOTHRACE WP2]
- . Magnetic plasma-ion sources and plasma-traps :
 - R&D High intensity ECR/MDIS ion source for ADS [TRASCO, PS-ESS]
 - **R&D on Diagnostics:** soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5]
 - Stopping power investigation in plasma for magnetic confinement fusion (MCF) plasma
 - Wave propagation/absorption in fusion plasmas: theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) [DTT]
 - New generation plasma chambers and resonators for compact reactors Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [IRIS and IRIS2.0 POC MISE]

3. Laser-cluster scenario and Polarized nuclear fusion fuel:

- The Coulomb Explosion Paradigma for the enhancement in the yield of reaction products
- Innovative sources and systems, theory and experiments for fusion from polarized nuclei

Laser-cluster scenario

THE COULOMB EXPLOSION PARADIGMA

The interaction of ultra-short laser pulses with an expanding gas mixture at controlled temperature and pressure inside a vacuum chamber causes the formation of plasmas with multi-keV temperature.

Step 1

Clusters are irradiated by high intensity laser pulse (~10¹⁶~10¹⁸ W/cm²).

Step 2

Laser pulse energy is first absorbed by electrons via heating mechanisms such as rapid collisional heating.

Step 3

Electrons escape from the cluster and leave positive charge build-up on the cluster.

Step 4

The cluster "explodes" and deuterons acquire multi-keV kinetic energy.

It is proven that if the temperature of the cluster is close to the critical one (for the compound), the laser absorption is enhanced causing an enhancement in the yield of reaction products

Physics Letters A

www.elsevier.com/locate/pla

Neutron enhancement from laser interaction with a critical fluid

H.J. Quevedo^a, G. Zhang^{b,1}, A. Bonasera^{b,c,*}, M. Donovan^a, G. Dyer^a, E. Gaul^a, G.L. Guardo^c, M. Gulino^{c,d}, M. La Cognata^c, D. Lattuada^c, S. Palmerini^{e,f}, R.G. Pizzone^c, S. Romano^c, H. Smith^a, O. Trippella^{e,f}, A. Anzalone^c, C. Spitaleri^c, T. Ditmire^a

Deuterium-deuterium fusion

About

$d + d \rightarrow {}^{3}\text{H}e(0.82MeV) + n(2.45MeV)$

 $d + d \rightarrow p(3.02MeV) + t(1.01MeV)$

$d + {}^{3}\text{H}e \rightarrow p(14.7MeV) + {}^{4}\text{H}e(3.6MeV)$

Nuclear fusion from laser-cluster interaction

Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas D. Lattuada, M. Barbarino, A. Bonasera, W. Bang, H. J. Quevedo, M. Warren, F. Consoli, R. De Angelis, P. Andreoli, S. Kimura, G. Dyer, A. C. Bernstein, K. Hagel, M. Barbui, K. Schmidt, E. Gaul, M. E. Donovan, J. B. Natowitz, and T. Ditmire

Search

Phys. Rev. C 93, 045808 - Published 19 April 2016

Accepted

PHYSICAL REVIEW C

covering nuclear physics

Kinetic Energy $< 10^2 \text{ keV}$ Density ~ 10¹⁸ atoms/cm³ 10⁵-10⁷ neutrons per shot In addition, the same reactions can be explored by means of the **Trojan Horse Method**

Versatile Array for Laser-induced Astrophysics Research

Science-driven, portable, cost-efficient

.cryo-cooled supersonic nozzle
.compact interaction chamber
.neutron ToF detectors (plastic/liquid scintillators)
.charged particle ToF detectors (SiC/CVD diamond detectors + FCs)
.2 TPS
.(CR39 for checks/normalization)

The AsFiN laser collaboration:

A. Bonasera, G.L. Guardo, M. La Cognata, L. Lamia, D. Lattuada, A.A. Oliva, R.G. Pizzone, G.G. Rapisarda, S. Romano, D. Santonocito, A. Tumino

Moreover, in the framework of the POL-fusion experiment (under the coordination of **Prof. G. Ciullo**), it is possible to investigate the enhancement in the d+d reaction cross section with polarized beam.

R&D di acceleratori per applicazioni energetiche ai LNS

Giuseppe Torrisi, INFN-LNS

THANK YOU