R&D di acceleratori per applicazioni energetiche ai LNS

Giuseppe Torrisi, INFN-LNS

2. Magnetic plasma-Ion Sources for ADS and plasma-traps for fusion

3. Laser-cluster scenario and Polarized nuclear fusion fuel

- **Laser-driven plasma-based acceleration** (e-, Ions) **and nuclear reactions** *(*activation, transmutation, fission and fusion processes) based on laser-matter interaction \rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ W/cm²)]:
	- 1) Electron acceleration by **Laser Wake Field Acceleration (LWFA)**
	- 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
	- *- Proton–boron fusion reaction in plasma:* for future advanced fusion ignition schemes and for laser-driven α particles sources;
	- *- Stopping power in warm dense matter:* important issue/property in *Inertial Confinement Fusion (ICF*) implosion study and design *[FUSION_GrV, SAMOTHRACE WP1]*.
- **Dielectric Laser Accelerator (DLA) on chip** based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on *Colliding Beam Fusion reactor (CBFR) [MICRON_GrV, SAMOTHRACE WP1]*
- **Micro-glass capillaries for μ-Beam irradiation** and analysis of *fusion plasma-facing materials and components [SAMOTHRACE WP2]*

2. Magnetic plasma-Ion Sources and plasma-traps

3. Laser-cluster scenario and Polarized nuclear fusion fuel:

- **Laser-driven plasma-based acceleration** (e-, Ions) **and nuclear reactions** *(*activation, transmutation, fission and fusion processes) based on laser-matter interaction \rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ W/cm²)]:
	- 1) Electron acceleration by **Laser Wake Field Acceleration (LWFA)**
	- 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
	- *- Proton–boron fusion reaction in plasma:* for future advanced fusion ignition schemes and for laser-driven α particles sources;
	- *- Stopping power in warm dense matter:* important issue/property in *Inertial Confinement Fusion (ICF*) implosion study and design *[FUSION_GrV, SAMOTHRACE WP1]*.
- **Dielectric Laser Accelerator (DLA) on chip** based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on *Colliding Beam Fusion reactor (CBFR) [MICRON_GrV, SAMOTHRACE WP1]*
- **Micro-glass capillaries for μ-Beam irradiation** and analysis of *fusion plasma-facing materials and components [SAMOTHRACE WP2]*

2. Magnetic plasma-Ion Sources and plasma-traps :

- **R&D High intensity ECR/MDIS proton source** for ADS *[TRASCO, TRIPS, PS-ESS]* driving a subcritical reactor to transmute nuclear waste
- **R&D** on Diagnostics: soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [*PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5*]
- **Wave propagation/absorption in fusion plasmas:** theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas through Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) *[DTT]*
- **Stopping power investigation** for *magnetic confinement fusion (MCF)* plasma
- **New generation plasma chambers and resonators for compact reactors:** Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [*IRIS_Gr5 and IRIS2.0 POC MISE]*

3. Laser-cluster scenario and Polarized nuclear fusion fuel

- **Laser-driven plasma-based acceleration** (e-, Ions) **and nuclear reactions** *(*activation, transmutation, fission and fusion processes) based on laser-matter interaction \rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 10¹⁹ W/cm²)]:
	- 1) Electron acceleration by **Laser Wake Field Acceleration (LWFA)**
	- 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
	- *- Proton–boron fusion reaction in plasma:* for future advanced fusion ignition schemes and for laser-driven α particles sources;
	- *- Stopping power in warm dense matter:* important issue/property in *Inertial Confinement Fusion (ICF*) implosion study and design *[FUSION_GrV, SAMOTHRACE WP1]*.
- **Dielectric Laser Accelerator (DLA) on chip** based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on *Colliding Beam Fusion reactor (CBFR) [MICRON_GrV, SAMOTHRACE WP1]*
- **Micro-glass capillaries for μ-Beam irradiation** and analysis of *fusion plasma-facing materials and components [SAMOTHRACE WP2]*

2. Magnetic plasma-Ion Sources and plasma-traps :

- **R&D High intensity ECR/MDIS proton source** for ADS *[TRASCO, TRIPS, PS-ESS]* driving a subcritical reactor to transmute nuclear waste
- **R&D** on Diagnostics: soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [*PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5*]
- **Wave propagation/absorption in fusion plasmas:** theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas through Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) *[DTT]*
- **Stopping power investigation** for *magnetic confinement fusion (MCF)* plasma
- **New generation plasma chambers and resonators for compact reactors:** Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [*IRIS_Gr5 and IRIS2.0 POC MISE]*

3. Laser-cluster scenario and Polarized nuclear fusion fuel:

- **The Coulomb Explosion Paradigma** for the enhancement in the yield of reaction products *[ASFIN]*
- Innovative sources and systems, theory and experiments for fusion from polarized nuclei *[VALAR]*

SAMOTHRACE: the ECOSYSTEM

SiciliAn Micro and nanO TecHnology Research and innovAtion Center

Samothrace Ecosystem: The Structure

28 partners

Innovation expert partners

S. Tudisco, INFN

PILLAR ENERGY

TOPIC-AREA: Devices for production/conversion of energy from renewables source Devices and diagnostics sensors for fusion energy

SiciliAn Micro and nanO TecHnology Research and innovAtion Center

Spoke 5 organization

Work package

- WP1. **Micro accelerators** for Health and **Energy**
- WP2. **Micro e Nano beams** for Health and **Energy**
- WP3. **Photodetectors and digital ACQ** for Environment, Agritech, Health
- WP4. **Detectors** for particle therapy, Health
- WP5. **Diagnostics and technologies** for Fusion Power, **Energy**

Workshop Transizione Energetica (INFN-E e INFN-A) 21–22 Feb 2024 INFN Laboratori Nazionali del Sud

Samothrace – ECS_000000022

SiciliAn Micro and nanO TecHnology Research and innovAtion Center

 $UniPA$

Samothrace – ECS_000000022 Samothrace – ECS_000000022 S. Tudisco – ETS meeting, Feb 15th 2024

- **Laser-driven plasma-based acceleration** *(e-, Ions)* **and nuclear reactions** *(*activation, transmutation, fission and fusion processes) based on laser-matter interaction → [*I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm2)]:*
	- 1) Electron acceleration by **Laser Wake Field Acceleration (LWFA)**
	- 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:
	- *- Proton–boron fusion reaction in plasma:* for future advanced fusion ignition schemes and for laser-driven α particles sources;
	- *- Stopping power in warm dense matter:* important issue/property in Inertial Confinement Fusion (ICF) implosion study and design *[FUSION_GrV, SAMOTHRACE WP1]*.
- **Dielectric Laser Accelerator (DLA) on chip** based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on *Colliding Beam Fusion reactor (CBFR) [MICRON_GrV, SAMOTHRACE WP1]*
- **Micro-glass capillaries for μ-Beam irradiation** and analysis of *fusion plasma-facing materials and components [SAMOTHRACE WP2]*

-
-
-
-
-

- **Laser-driven plasma-based acceleration** *(e-, Ions)* **and nuclear reactions** *(*activation, transmutation, fission and fusion processes) based on laser-matter interaction → [*I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I ≥ 10¹⁹ W/cm2)]:*
	- 1) Electron acceleration by **Laser Wake Field Acceleration (LWFA)**
	- 2) Ion acceleration by **Target Normal Sheath Acceleration (TNSA)** at above 1–10 MeV/nucleon, sufficient to penetrate into the nucleus of many light atoms enabling studies on:

Workshop Transizione Energetica (INFN-E e INFN-A) 21–22 Feb 2024 INFN Laboratori Nazionali del Sud

- *- Proton–boron fusion reaction in plasma:* for future advanced fusion ignition schemes and for laser-driven α particles sources;
- *- Stopping power in warm dense matter:* important issue/property in Inertial Confinement Fusion (ICF) implosion study and design
- *[FUSION_GrV, SAMOTHRACE WP1]*.

erator is of **several terms of mev/piller** (just speriment gammas, neutrons fized nuclei **contains** accelerator is of **several tens of MeV/**µ**m** (just few tens of MeV/m in conventional accelerators due to breakdown effects)

• **Dielectric Laser Accelerator (DLA) on chip** based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown

I-LUCE - INFN - Laser indUCEd radiation production

An high-power (up to 0.5 PW), ultra-short (down to 23 fs) Ti:Sa laser will provide two laser outputs

- 45TW/23fs/10Hz
- 0.5PW/23fs/3Hz

Pulse duration can be scaled down to 500fs (with compressor) and ns scale level with a consequently variation on laser intensity

Lasers will be directed towards two different experimental areas E1 and E2

Laser/plasma and ions: world almost unique environment

I-LUCE layout

An irradiation point for fusion studies

An high power laser: 8J/23fs/1Hz A plasma generated by the laser: Temperature: 2 eV - 200 eV Density: 1025 m-3 Ion beams in a wide Z range and energy up to 70 AMeV provided by the TANDEM and Cyclotron accelerators

E2 will allow for studies in the inertial confinement regime

Laser/plasma and ions: world almost unique environment

$$
n \approx \tfrac{I}{e^2 T}
$$

$$
T \approx \left(\tfrac{I}{1.37 \times 10^{16}\,\mathrm{W/cm^2}}\right)^{1/2}
$$

High-power modality: 500TW/3Hz

Main radiations

Laser main parameters

GAP Cirrone, PhD - pablo.cirrone@lns.infn.it

Nuclear physics mid-term plan

Positrons generation

Protons and

Chapter 6.2 Laser applications

THE EUROPEAN Eur. Phys. J. Plus (2023) 138:1038 PHYSICAL JOURNAL PLUS https://doi.org/10.1140/epip/s13360-023-04358-7 Regular Article

Nuclear physics midterm plan at LNS

C. Agodi¹, F. Cappuzzello^{1,2}, G. Cardella³, G. A. P. Cirrone¹, E. De Filippo³, A. Di Pietro¹, A. Gargano⁴, M. La Cognata^{l, a}, D. Mascali¹, G. Milluzzo¹, R. Nania⁵, G. Petringa¹, A. Pidatella¹, S. Pirrone³, R. G. Pizzone¹, G. G. Rapisarda^{1,2,b}, M. L. Sergi^{1,2}, S. Tudisco¹, J. J. Valiente-Dobón⁷, E. Vardaci^{4,8}, H. Abramczyk⁹, L. Acosta¹⁰, P. Adsley¹¹, S. Amaducci¹, T. Banerjee⁴, D. Batani¹², J. Bellone^{1,2}, C. Bertulani^{11,13}, S. Biri¹⁴, A. Bogachev¹⁵, A. Bonanno^{1,16}, A. Bonasera^{1,11}, C. Borcea¹⁷, M. Borghesi¹⁸, S. Bortolussi^{19,20}, D. Boscolo¹⁴, G. A. Brischetto^{1,2}, S. Burrello^{1,21,22}, M. Busso^{23,24}, S. Calabrese¹, S. Calinescu¹⁷, D. Calvo²⁵, V. Capirossi^{25,26}, D. Carbone¹, A. Cardinali²⁷, G. Casini²⁸, R. Catalano¹, M. Cavallaro¹, S. Ceccuzzi²⁹, L. Celona¹, S. Cherubini^{1,2}, A. Chieffi^{24,30}, I. Ciraldo^{1,2}, G. Ciullo^{31,32}, M. Colonna¹, L. Cosentino¹, G. Cuttone¹, G. D'Agata^{1,2}, G. De Gregorio^{4,33}, S. Degl'Innocenti³⁴, F. Delaunay^{1,2,35}, L. Di Donato^{1,36}, A. Di Nitto^{4,8}, T. Dickel^{37,38}, D. Doria^{17,39}, J. E. Ducret⁴⁰, M. Durante¹⁴, J. Esposito⁷, F. Farrokhi¹, J. P. Fernandez Garcia²¹, P. Figuera¹, M. Fisichella¹, Z. Fulop¹⁴, A. Galatá⁶, D. Galaviz Redondo⁴¹, D. Gambacurta¹, S. Gammino¹, E. Geraci^{2,3}, L. Gizzi⁴², B. Gnoffo^{2,3}, F. Groppi^{26,27}, G. L. Guardo¹, M. Guarrera¹, S. Hayakawa⁴³, F. Horst¹⁴, S. Q. Hou⁴⁴, A. Jarota⁸, J. José⁴⁵, S. Kar^{18,46}, A. Karpov¹⁵, H. Kierzkowska-Pawlak⁹, G. G. Kiss¹⁴, G. Knyazheva¹⁵, H. Koivisto⁴⁷, B. Koop⁷², E. Kozulin¹⁴, D. Kumar^{37,38}, A. Kurmanova¹, G. La Rana^{4,8}, L. Labate⁴², L. Lamia^{1,2}, E. G. Lanza³, J. A. Lay^{48,49}, D. Lattuada^{1,6}, H. Lenske⁵⁰, M. Limongi^{24,30,51}, M. Lipoglavsek⁵², I. Lombardo^{2,3}, A. Mairani⁷², S. Manetti^{26,27}, M. Marafini⁷¹, L. Marcucci³⁴, D. Margarone⁵³, N. S. Martorana^{1,3}, L. Maunoury⁴⁰, G. S. Mauro¹, M. Mazzaglia¹, S. Mein⁷², A. Mengoni^{5,54}, M. Milin⁵⁵, B. Mishra¹, L. Mou⁷, J. Mrazek⁵⁶ P. Nadtochy⁵⁷, E. Naselli¹, P. Nicolai¹², K. Novikov¹⁵, A. A. Oliva¹, A. Pagano³, E. V. Pagano¹, S. Palmerini^{23,24}, M. Papa³, K. Parodi⁷³, V. Patera⁵⁸, J. Pellumaj^{7,31}, C. Petrone²⁴, S. Piantelli²⁸, D. Pierroutsakou⁴, F. Pinna²⁵, G. Politi^{2,3}, I. Postuma^{19,20}, P. Prajapati^{1,59}, P. G. Prada Moroni³⁵, G. Pupillo⁷, D. Raffestin¹², R. Racz¹⁴, C.-A. Reidel¹⁴, D. Rifuggiato¹, F. Risitano^{3,60}, F. Rizzo^{2,3}, X. Roca Maza^{61,62}, S. Romano^{1,2}, L. Roso⁶³, F. Rotaru¹⁷, A. D. Russo¹, P. Russotto¹, V. Saiko¹⁵, D. Santonocito¹, E. Santopinto⁶⁴, G. Sarri⁴⁶, D. Sartirana²⁵, C. Schuy¹⁴, O. Sgouros¹, S. Simonucci⁶⁵, G. Sorbello^{1,36}, V. Soukeras¹, R. Spartá¹, A. Spatafora^{1,2}, M. Stanoiu¹⁷, S. Taioli^{66,67,68}, T. Tessonnier⁷ P. Thirolf⁷³, E. Tognelli³⁴, D. Torresi¹, G. Torrisi¹, L. Trache¹⁷, G. Traini⁷⁰, M. Trimarchi^{3,60}, S. Tsikata⁶⁹, A. Tumino^{1,6}, J. Tyczkowski⁹, H. Yamaguchi⁴³, V. Vercesi^{19,20}, I. Vidana³, L. Volpe⁶³, U. Weber¹⁴

¹ Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, 95123 Catania, Italy ² Dipartimento di Fisica e Astronomia "Ettore Majorana", University of Catania, 95123 Catania, Italy ³ Sezione di Catania, Istituto Nazionale di Fisica Nucleare, 95123 Catania, Italy ⁴ Sezione di Napoli, Istituto Nazionale di Fisica Nucleare, 80126 Napoli, Italy ⁵ Sezione di Bologna, Istituto Nazionale di Fisica Nucleare, 40127 Bologna, Italy ⁶ Facoltà di Ingegneria e Architettura, Università degli Studi di Enna "Kore", 94100 Enna, Italy 7 Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, 35020 Legnaro, Italy 8 Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, 80126 Napoli, Italy ⁹ Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland ¹⁰ Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico City, Mexico ¹¹ Cyclotron Institute, Texas A &M University, College Station, TX 77840, USA ¹² Centre Lasers Intenses et Applications (CELIA), University of Bordeaux, 33400 Talence, Bordeaux, France ¹³ Department of Physics and Astronomy, Texas A &M University-Commerce, Commerce, TX 75429-3011, USA ¹⁴ Atomki, Institute of Nuclear Research, 4026 Debrecen, Hungary ¹⁵ Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia 141980 ¹⁶ Osservatorio Astrofisico di Catania, INAF, via S.Sofia 78, 95123 Catania, Italy ¹⁷ IFIN-HH "Horia Hulubei", National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania ¹⁸ School of Mathematics and Physics, Centre for Plasma Physics, Queen's University, Belfast, Northern Ireland BT7 1NN, UK ¹⁹ Dipartimento di Fisica, Università degli Studi di Pavia, Via Agostino Bassi, 6, 27100 Pavia, Italy ²⁰ Sezione di Pavia, Istituto Nazionale di Fisica Nucleare (INFN), Via Agostino Bassi, 6, 27100 Pavia, Italy ²¹ Departamento de Física Atómica Molecular y Nuclear, University of Seville, 41012 Sevilla, Spain ²² Fachbereich Physik, Institut für Kernphysik, Technische Universität Darmstadt, 610101 Darmstadt, Germany ²³ Dipartimento di Fisica e Geologia, Università di Perugia, 06125 Perugia, Italy ²⁴ Sezione di Perugia, Istituto Nazionale di Fisica Nucleare, 06125 Perugia, Italy ²⁵ Sezione di Torino, Istituto Nazionale di Fisica Nucleare, 10125 Torino, Italy ²⁶ DISAT, Politecnico di Torino, 10129 Torino, Italy ²⁷ FSN Department, ENEA, DTT S.C.a r.l., 00044 Frascati, Italy ²⁸ Sezione di Firenze, Istituto Nazionale di Fisica Nucleare, 50019 Sesto Fiorentino (Fi), Italy ²⁹ ENEA, DTT S.C.a r.l., 00044 Frascati, Italy

Why the p-¹¹B fusion reaction?

1 $p(11B, \alpha)8Be$ 8 3.9 Mel $I2.46$ MeVI 0.9 MeV 3.76 MeV [2.46 MeV] 3.9 MeV

- **Neutronless fusion reactions**
- Two resonance at 148 keV and 580 keV in the system center of mass
- It is considered as a **potential candidate** in inertial fusion scheme
- Reagents **more abundant in nature** with respect to other fusion reactions of interest, and easier to handle (with respect to tritium, for example)
- \bullet Interest for the realisation of intense α sources for applications

M.Oliphant, L.Rutherford, Proc. R. Soc. London A 141 259 (1933)

FUSION: an INFN project to study the p-11B fusion reaction

- Pitcher-catcher scheme | \triangleright New targets, diagnostics and irradiation schemes for p11B fusion reaction in plasma and in catcher configuration
	- Protons and alphas stopping powers \triangleright measurements in plasma
	- PIC and hydrodinamic simulation to \blacktriangleright predict the emission

Stopping power of ions in plasma is a process of fundamental importance in many applications:

- § Inertial Confinement Fusion
- § Astrophysics and Nuclear Astrophysics
- High-energy Density Physics
- § Plasma strippers
- § Solid State Physics

Characterization of ions stopping power in plasma at I-LUCE facility

Collaboration: C. Altana, G. Castro, S. Cavallaro, C. Ciampi, G.A.P. Cirrone, R. De Angelis, S. De Luca, G. Lanzalone, L. Malferrari, F. Odorici, L. Palladino, G. Pasquali, A. Russo, A. Trifirò and S. Tudisco

Partecipating INFN sections:Catania, LNS, LNGS, Bologna, Firenze

Proposed Setup at I-LUCE facility

LNS has the only possibility, together with GSI, to deliver a beam with low energy by Tandem accelerator that cross a plasma plume generated under vacuum by a laser beam interacting with a solid target.

Activities at INFN-LNS

- INFN FUSION project financed by the INFN Committee V
- Cost Action

PROBONO: PROtonBOron Nuclear fusion: from energy production to medical applicatiOns

EP 2 833 365 A1 - reaction scheme EP3266470A1 - medical applications

Involvement in WP3 (Task 32.2)

Modelling of protons and alpha stopping power in plasma will be performed with the Geant4 Monte Carlo code with a module dedicated to the simulation of the interaction of 3.5 MeV alphas in plasma

Involvement in WP7

To make the I-LUCE facility available for future studies in the laser-plasma environnement

- -
	-
	-
	-
- **Dielectric Laser Accelerator (DLA) on chip** based on microstructures, lasers @high-rep. rates, commercial dielectrics @higher breakdown threshold, higher gradients (1-10 GV/m). DLAs reduce size/cost for demo on *Colliding Beam Fusion reactor (CBFR) [MICRON_GrV, SAMOTHRACE WP1]*
-

- **R&D High intensity ECR/MDIS** ion source for ADS **[TRASCO, PSICO, PS**
-
- Stopping power investigation in plasma for magnetic $\frac{1}{\sqrt{2}}$ confined $\frac{1}{\sqrt{2}}$ plasma
- thermonuclear fusion plasmas thriugh Ion Cyclotron Heating And The Cyclotron Heating (ECH) *[DTT]*
-

Innovative sources and systems, theory and experiments for the polarized nuclei

Micro-glass capillaries for μ-Beam irradiation and **(a)** *n facing materials and components [SAMOTHRACE WP2]*

• **R&D on Diagnostics:** soft-X and hard X spectroscopy **Faser, YEN Easer** a tudy of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers **than 2008** THE REEN v [*PANDORA Gr3 experiment, DTT, SAMOTHRACE WP5*]

Wave propagation/absorption in fusion plasmas: **the study; development Ly** ment of antennas and systems for the excitation and control of

New generation plasma chambers and resonators (b) \setminus $\$ advanced plasma chambers ensuring better radiation^N N Control and confinement [*IRIS and IRIS2.0 POC MISE]*

MICRON_Gr5 Experiment: Optical Integrated DIELECTRIC LASER ACCELERATOR (DLA) useful as compact/cheap demo for CBFR

high-Q photonic-crystal cavity. (Courtesy of C2N)

cost-effective and **portable dielectric** particle accelerator in a **table-top** configuration

- based on low-cost, **mass production micro-optical chips** driven by **solid state laser**
- **10X higher accelerating gradient** with respect to metallic conventional RF LINAC

Many DLA structures

21–22 Feb 2024 INFN Laboratori Nazionali del Sud

MICRON_Gr5 Experiment: Optical Integrated DIELECTRIC LASER ACCELERATOR (DLA) useful as compact/cheap demo for CBFR

Potential applications for Aneutronic fusion reaction p-11B in **Colliding Beam Fusion Reactor (CBFR)** [BNL-48642 "Nuclear Fusion of Protons with Ions of Boron", Alessandro G. Ruggiero Brookhaven National Laboratory]

Two beams of ions are fired into this reactor, one of protons (red, upper left) and one of boron-11 nuclei (red/blue, upper right). Neutrons are blue here. The magnetic compression of the gas allows these to fuse into helium-4 nuclei (left and right), with the production of energy. This reaction is advantageous as it does not produce neutrons

- -
	-
	-
	-
-
- **Micro-glass capillaries for μ-Beam irradiation** and analysis of *fusion plasma-facing materials and components [SAMOTHRACE WP2]*

INFN Laboratori Nazionali del Sud

The transmission of MeV ions is due by scattered ions on the inner walls.

The microbeam line based on glass microcapillaries

MOTIVATION: Plasma-wall interactions (PWI) in controlled fusion devices with magnetic confinement **Experator MAZIONALI DEI** need for detailed material analyses and for experimental simulation of radiation- induced damage

Detailed mapping of species with a resolution of 1-30 μm can be carried out **with μ-RBS, μ-NRA, μ-EPS and μ-PIXE**, i.e. using micro-beams formed in a quadrupole-equipped beamline or **MICRO-CAPILLARIES**

MAIN TOPICS COLLECTED [and reference experiments]

Magnetic traps for hot plasmas excited by e.m. waves

• Laser-driven plasma-based acceleration (e-, Ions) and nuclear reactions *(activation, transmutation, fission and fusion processes)* ased on laser-matter interaction \Rightarrow [I-LUCE (INFN—Laser-Induced particle acceleration) facility 100-TW-class laser (fs, 1–10 Hz, I \geq 1019 V (ANP) :

2. Magnetic plasma-ion sources and plasma-traps :

- **R&D High intensity ECR/MDIS proton source** for ADS *[TRASCO, PS-ESS]* driving a subcritical reactor to transmute nuclear waste
- **R&D** on Diagnostics: soft-X and hard X spectroscopy / tomography for the study of magnetized plasmas for fusion in compact traps and reactors (TOKAMAK). Reflectometers/interferometers to control plasma density [*PANDORA_Gr3 experiment, DTT, SAMOTHRACE WP5*]
- **Wave propagation/absorption in fusion plasmas:** theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) *[DTT]*
- **Stopping power investigation** for *magnetic confinement fusion (MCF)* plasma
- **New generation plasma chambers and resonators for compact reactors:** Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [*IRIS_Gr5 and IRIS2.0 POC MISE]*

-
-

The TRASCO LINAC (1GeV, 30 mA, CW)

The TRASCO–AC Group, Status of the high current proton accelerator for the TRASCO program. Report No. INFN/TC-00/23

TRIPS (TRasco Intense Proton Source)

Proton beam current: 35 mA dc Beam Energy: 80 keV Beam emittance: $\epsilon_{RMS} \leq 0.2 \pi$ *mm mrad Reliability: close to 100%*

Jan. 2001: completed

R. Gobin, R. Ferdinand, L.Celona, G. Ciavola, S. Gammino, Rev.Sci.Instr. 70(6),(1999), 2652

P—Y. Beaubais, R. Gobin, R. Ferdinand, L.Celona, G. Ciavola, S. Gammino, J. Sherman Rev.Sci.Instr. 71,(2000), 1413

L.Celona, G. Ciavola, S. Gammino, F. Chines, R. Gobin, R. Ferdinand, Rev.Sci.Instr. 75(5),(2004), 1423

L.Celona, G. Ciavola, S. Gammino, F. Chines, R. Gobin, R. Ferdinand, Rev.Sci.Instr. 75(5),(2004), 1423

VIS ion source description

PS-ESS: two decades of R&D towards high reliability, easy operation, reproducibility

2018, Feb. 1st - Source fully assembled in Lund by INFN-LNS team (4 weeks for the disassembly in Catania, less than 3 weeks for assembly phase in Lund)

Beam characterization

Emittance: 1.06 ^π.mm.mrad **(< 1.8)** Max divergence: 55 mrad **(< 80)**

Proton Fraction: 83% **(> 75%)**

Source nominal configuration

109 A coil1; 67 A coil2; 228 A coil3; 3.75 SCCM H2

Proton current range 67-74 mA SATISFIED

40

High Stability Microwave Discharge Ion Sources: a new frontier just disclosed

All super stable configurations present a particular magnetic field shape. Deep analysis of the involved physics is under way.

L. Neri, L.Celona, Rev.Sci.Instr. 70(6),(1999), 2652

Efforts at LNS since 10 -15 years to make an innovation of research goals, methods, instruments à **use of plasmas for fundamental science and applications**

From a laboratory ECR "Plasma star" to…

INFN

In the frame of the **PANDORA** project an **innovative multi-diagnostic approach** to correlate plasma parameters to nuclear activity has been proposed. This is based on several detectors and non-invasive techniques (*Optical Emission Spectroscopy, RF systems,*

InterferoPolarimetry, time- and space-resolved X-ray spectroscopy), allowing **detailed investigations of magnetoplasma properties**.

INFN Laboratori Nazionali del Sud

Plasma system scenarios

The system was designed to be tested on the **PANDORA plasma trap (C)** which represents an "*intermediate*" case between the ultra-compact plasma ion sources (**FPT (B)** and **Test-bench (A)**) and the large-size thermonuclear **Fusion devices (D)**.

Test-Bench (without plasma)

WP5 Detectors and **Technologies** for **Fusion Power**

Development of X-ray detectors:

- New SiC/GaN sensors for X-ray detection;
- High resolution X-ray CCD pin-hole system for plasma imaging and spatiallyresolved spectroscopy;

"Live" X-ray imaging of plasma emission

Sub-THz interferopolarimetry:

• new polarimetric system for the line-integrated electron density measurement, based on the detection of Lissajous figure by means of a Super-heterodine scheme;

Detection the Lissajous figure from a **two channels scope** of a direct probing RF signals crossing the magnetoplasma

Rotation of the Lissajous figures in freespace (rotating the RX antenna) and with polarizer (for different polarizer angles)

Flexible Plasma Trap @ LNS

It can be considered as a test-bench for the development of diagnostics, heating systems, etc.

INFN

- -
	-
	-
	-
-
-

2. Magnetic plasma-ion sources and plasma-traps :

-
-
- **Stopping power investigation in plasma** for magnetic confinement fusion (MCF) plasma
-
-

- - -
		-
		-
		-
	-
	-

2. Magnetic plasma-ion sources and plasma-traps :

-
-
-
- **Wave propagation/absorption in fusion plasmas:** theoretical study; development of antennas and systems for the excitation and control of thermonuclear fusion plasmas thriugh Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) *[DTT]*
-

In-plasma research

- *β-dacays in plasmas*
- *Plasma heating by EBWs*
- *multiple frequency heating effects*
- *Cyclotron maser instability*

Laboratori Nazionali del Sud

- *Supporting design of new ion sources*
- *Modelling wave-plasma interaction in the ECR domain*
- *Design of ICH antennas for ECR devices*
- *Supporting development of diagnostics (interferopolarimetry+Xray)*

• *Contribution to ICH-task by supporting antenna design and plasma simulations (use of full-wave code)*

47

- *Preliminary use of waveoptics tools to support interferopolarimetry*
- *Profilometry by inverse scattering approach*

Sources

Theoretical study of electromagnetic propagation and related absorption mechanisms in magnetized plasmas for laboratory (fusion) and compact traps in several frequency range (AW, IC, LH, EC)

- Solution of the electromagnetic dispersion relation in the complex domain of the wave-vector^{*} (at fixed frequency), resulting from the **Maxwell-Vlasov equation system for magnetized plasmas**
	- Wave propagation
	- Wave spatial damping
- Solution of the **electromagnetic Integro-Differential Maxwell-Vlasov equation system for magnetized plasmas in Cartesian and Toroidal geometry** with BC established by external antennas at fixed frequency°
	- Distribution of the electromagnetic field inside the plasma
	- RF Power Deposition Profiles inside the plasma
- **Solution of the 2D (in velocity space) Fokker-Planck equation** with a quasi-linear diffusion term due to the RF wave*°
	- Determination of the ion/electron distribution function under the action of electromagnetic field
	- Characterization of a fast ion/electron tail of the distribution function and consequences on wave destabilization

* A. Cardinali, DisEMag, FokPlanck numerical codes ° M. Brambilla, FELICE, TORIC, SSFPQL numerical codes

INFN-DTT at LNS Sub-task:

As a spin-off of R&D on plasma heating and diagnostics, now coordinating LNS contribution to Ion Heating, interferopolarimetry and X-ray measurements

Sub-task:

400 GHz

Interferopolarimetry

 $\overline{15}$ $\overline{2}$ $\overline{25}$ $\overline{3}$

 2.5

 1.5

Sub-task:

Soft X-ray diagnostics (imaging and tomography)

ICH Antenna DESIGN

Divertor Tokamak Test Design of the **ICH Antenna**

 V/m

ECH Waveguides Design

Overall view from the mounting flange connection side with the centering system

- -
	-
	-
	-
-
-

2. Magnetic plasma-ion sources and plasma-traps :

-
-
-
-
- **New generation plasma chambers and resonators for compact reactors** Design, numerical investigation and experimental tests of advanced plasma chambers ensuring better radiation-plasma coupling, stability, control and confinement [*IRIS and IRIS2.0 POC MISE]*

Innovative

Ion

INFN Partners *LNS, LNL* **EU Partners** *ATOMKI-Debrecen (Hungary) Jyvaskyla University (Finland)* **Industrial Partners** *UMAS Technology*

IRIS is a project supported by INFN through the competitive Grant n.73 (after 2016 selection $-\frac{1}{2}$ th in the final ranking over >500 participants)

DB-Science

fabricated by Additive Manufacturing Technology

IRIS: italian patent pending n. 102020000001756

International patent pending N. PCT/IB2021/050696 //

Innovative **R**esonator **I**on **S**ource **(IRIS) (E0130645) BRE-sz**

new shape (perspective view) new shape (front view)

Stationary PIC simulations: Energy

Additive manufacturing (AM) *3D printing IRSI towards 1:1 prototype*

- - -
		-
		-
		-
	-
	-
- -
	-
	-
	-
	-

3. Laser-cluster scenario and Polarized nuclear fusion fuel:

- **The Coulomb Explosion Paradigma** for the enhancement in the yield of reaction products
- Innovative sources and systems, theory and experiments for fusion from **polarized nuclei**

Laser-cluster scenario

THE COULOMB EXPLOSION PARADIGMA

The interaction of ultra-short laser pulses with an expanding gas mixture at controlled temperature and pressure inside a vacuum chamber causes the formation of plasmas with multi-keV temperature.

Step 1

Clusters are irradiated by high intensity laser pulse \sim 10¹⁶~10¹⁸ W/cm²).

Step 2

Laser pulse energy is first absorbed by electrons via heating mechanisms such as rapid collisional heating.

Step 3

Electrons escape from the cluster and leave positive charge build-up on the cluster.

Step 4

The cluster "explodes" and deuterons acquire multi-keV kinetic energy.

It is proven that if the temperature of the cluster is close to the critical one (for the compound), the laser absorption is enhanced causing an **enhancement in the yield of reaction products**

Physics Letters A

www.elsevier.com/locate/pla

Neutron enhancement from laser interaction with a critical fluid

H.J. Quevedo^a, G. Zhang ^{b,1}, A. Bonasera ^{b,c,*}, M. Donovan^a, G. Dyer^a, E. Gaul^a, G.L. Guardo^c, M. Gulino^{c,d}, M. La Cognata^c, D. Lattuada^c, S. Palmerini^{e,f}, R.G. Pizzone^c, S. Romano^c, H. Smith^a, O. Trippella^{e,f}, A. Anzalone^c, C. Spitaleri^c, T. Ditmire^a

Deuterium-deuterium fusion

 $d + d \rightarrow {}^{3}\text{He}(0.82MeV) + n(2.45MeV)$

 $d + d \rightarrow p(3.02MeV) + t(1.01MeV)$

 $d + {}^{3}\text{He} \rightarrow p(14.7MeV) + {}^{4}\text{He}(3.6MeV)$

Nuclear fusion from laser-cluster interaction

105-107neutrons per shot

Trojan Horse Method

Versatile Array for Laser-induced Astrophysics Research

Science-driven, portable, cost-efficient

•cryo-cooled supersonic nozzle •compact interaction chamber •neutron ToF detectors (plastic/liquid scintillators) •charged particle ToF detectors (SiC/CVD diamond detectors + FCs) •2 TPS •(CR39 for checks/normalization)

The AsFiN laser collaboration:

A. Bonasera, G.L. Guardo, M. La Cognata, L. Lamia, D. Lattuada, A.A. Oliva, R.G. Pizzone, G.G. Rapisarda, S. Romano, D. Santonocito, A. Tumino

Moreover, in the framework of the POL-fusion experiment (under the coordination of **Prof. G. Ciullo**), it is possible to investigate the enhancement in the d+d reaction cross section with polarized beam.

R&D di acceleratori per applicazioni energetiche ai LNS

Giuseppe Torrisi, INFN-LNS

THANK YOU