

Possible physical significance of new measurements in the energy region from the "Knee" to the "Ankle".

> Paolo Lipari Workshop for LHAASO Roma 20th july 2011

Project Overview LHAASO

Charged Particle Array

Detector Array

Water C Array

Wide FOV C-Telescope Array &

Core Detector Array

LARGE MAGELLANIC CLOUD

Si

SMALL MAGELLANIC CLOUD

"Bubble" of cosmic rays generated in the Milky Way and contained by the Galaxy magnetic field

Space extension and properties of this "CR bubble" remain very uncertain

$$\phi_j(E) = \frac{c}{4\pi} n_j(E)$$

Galactic Cosmic Rays

$$N_j(E) = \int d^3x \ n_j(E, \vec{x})$$

$$N_j(E) = Q_j(E) \times T_j(E)$$

p, nuclei(Z, A) \overline{p} , e^- , e^+ Injection of cosmic rays

Containment time

Different particles

Injection of cosmic rays

Containment time

$$N_j(E) = Q_j(E) \times T_j(E)$$

$$L_j = \int dE \ E \ Q_j(E)$$

LARGE Power Requirement

Spectral Shape [Dynamics of acceleration process]

Source Identification ! Maximum Energy of the Galactic CR sources "PeV-atrons" (10¹⁵ eV) "EeV-atrons" (10¹⁸ eV) Injection of cosmic rays Containment time

$$N_j(E) = Q_j(E) \times T_j(E)$$

Competition of different times:

$$T_{\mathrm{int}}^{p,A}(E) \propto \left[\sigma_j(E)\right]^{-1} \sim \text{slowly varying}$$

$$T_{\text{diffusion}}\left(\frac{p\,c}{Z}\right) \propto \left(\frac{p\,c}{Z}\right)^{-\delta}$$

$$T_{\rm loss}^{(e^{\mp})}(E) \propto \frac{1}{E}$$

Interaction (hadrons)

Escape from Galaxy

Energy losses (electrons/positrons)

Piece of extragalactic space: Non MilkyWay-like sources

Piece of extragalactic space: Non MilkyWay-like sources

The Galactic to Extragalactic Transition

is emerging as a crucial problem for CR science.

Power Law Injection (No Cosmic Evolution)

CAS A (1667)

The SuperNova Paradigm

Detection of Starburst galaxies

Gamma Ray Luminosities (> 100 MeV)

 π°

The Acceleration of CR is correlated to the Star Formation Rate (and therefore Star "Death" Rate) Compatible with the "standard scenario".

GAMMA RAY BURSTS (GRB's)

GRB : associated with a su<mark>bset of SN Stellar Gravitational Collapse</mark>

UHECR

1. Energy Spectrum

- Clear identification of a high energy suppression [the "END" (... well the "suppression") of exotic/fundamental physics modeling for UHECR].
- Good agreement between experiments ["small" but important question about the energy scale].
- Physical interpretation strongly coupled to (2., 3.) (anisotropy + composition). [proton GZK ?]

HiRes/ TA – Auger observe the GZK suppression

But : problem on the energy scale

[or Source Cutoff]

HiRes/ TA – Auger observe the GZK suppression

But : problem on the energy scale

UHECR

Crucial Problem:

Galactic Extragalactic Transition

1. Energy Spectrum

2. Anisotropy

3. Composition

Significant Experimental Discrepancies

Auger/Hires/TA

Confusing situation.

$E \simeq 10^{20} \text{ eV}$

Detailed measurements of the Energy Spectrum [Identification of features]

Evolution with energy of the Chemical Composition

Anisotropies of the flux

Surprising and important result.

Sciencexpress

PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra

We report precision measurements of the proton and helium spectra in the rigidity range 1 GV-**1.2 TV performed by the satellite-borne experiment PAMELA.** We find that the spectral shapes of these two species are different and cannot be well described by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.

CREAM (calorimeter on balloon) (5 flights in Antartica. Total of 156 days)

TeV spectra are harder than spectra < 200 GeV/n

Balloons & Satellites

Eun-Suk Seo

Discrepant hardening

Tibet AS Gamma Air Shower

Tibet III Air Shower Array (2003)

36,900 m²

			0	0	0	0	o o	
				0 0	o o	0 0	• •	
		0						0
0								O
0								
0								
0								
0								
							0 0 0 0 0 0 0 0 0	
0							0 0 0 0 0 0 0 0 0	о о о
		0						0
			0	0	0	0	0 0	
150 meters								

Spacing 7.5 meters (interior)

A(internal) = $36,900 \text{ m}^2$

Tibet Air Shower Energy Spectrum

TIBET AS-gamma CR spectra

TIBET AS-gamma CR spectra

HIRES spectrum

TIBET AS-gamma CR spectra

HIRES spectrum

AUGER spectrum Energy scale discrepancy.

KASCADE /KASCADE-GRANDE

primary energy E [GeV]

KASCADE Results

Model Dependence !

Progress in hadronic interaction modeling ?

7 + 7 TeV PP collider

	Model	QGSJET01		QGSJETII			SIBYLL 2.1			EPOS 1.99			
	\sqrt{s} (TeV)	0.9	2.36	7	0.9	2.36	7	0.9	2.36	7	0.9	2.36	7
$dN_{ch}/d\eta _{\eta=0}$		✓	\checkmark	~	✓	✓	over	~	\checkmark	\checkmark	✓	under	under
$\langle p_{\perp} \rangle$		over	over	\checkmark	over	over	over	\checkmark	under	under	✓	\checkmark	\checkmark
$P(N_{ch} < 5)$		over	over	under	over	over	over	over	over	over	✓	\checkmark	\checkmark
$P(N_{ch} > 30)$		✓	under	\mathbf{under}	\checkmark	\checkmark	over	over	\checkmark	over	under	under	under

LHC and Ultra-High Energy Cosmic Rays

KASCADE-GRANDE energy spectrum

Comparison with KASCADE & EAS-TOP

KASCADE-GRANDE spectrum

COSMIC RAY

ANISOTROPIES

Tibet AS γ (verified by ARGO + IceCube)

M. Amenomori et.al. Science, 2006

TIBET AS-Gamma

Fig. 3. Celestial CR intensity map for different representative CR energies. (**A**) 4 TeV; (**B**) 6.2 TeV; (**C**) 12 TeV; (**D**) 50 TeV; (**E**) 300 TeV. Data were gathered from 1997 to 2005. The vertical color bin width is 2.5×10^{-4} in [(A) to (D)] and 7.25×10^{-4} in (E) for different statistics, all for the relative CR intensity.

С

MILAGRO data (10 TeV hadrons).

2

Observation of the CRs large scale anisotropy

There have been several observations of *large-scale*, *part-per-mille anisotropy* in cosmic ray arrival directions between 0.1 and 100 TeV.

S. Toscano for the IceCube collaboration - RICAP 11 - 05/25/2011

S. Toscano for the IceCube collaboration - RICAP 11 - 05/25/2011

Energy dependence of the Solar dipole

* IceCube observes the Solar dipole in both energy bins. The observed amplitude is compatible with the expectations within the stat. and sys. uncertainties.

* The observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction.

S. Toscano for the IceCube collaboration - RICAP 11 - 05/25/2011

Small scale anisotropy

Several experiments have discovered anisotropies on scales of about 10°

* Milagro observes two localized regions with **significance** > 10σ in the total data set of 2.2 10^{11} events recorded over 7 years. The "hot" regions have fractional excesses of order several times 10^{-4} relative to the background.

* Same structures observed by ARGO-YBJ.

ICECUBE

Dipole and quadrupole fit

$$\begin{split} \delta I(\alpha,\delta) &= m_0 & \text{monopole} \\ &+ p_x \cos \delta \cos \alpha + p_y \cos \delta \sin \alpha + p_z \sin \delta & \text{dipole} \\ &+ \frac{1}{2} Q_1 (3\cos^2 \delta - 1) + Q_2 \sin 2\delta \cos \alpha + Q_3 \sin 2\delta \sin \alpha + Q_4 \cos^2 \delta \cos 2\alpha + Q_5 \cos^2 \delta \sin 2\alpha \text{ quadrupole} \end{split}$$

Coefficient	Fit Value
m_0	0.320 ± 2.264
p_x	2.435 ± 0.707
p_y	-3.856 ± 0.707
p_{z}	0.548 ± 3.872
Q_1	0.233 ± 1.702
Q_2	-2.949 ± 0.494
Q_3	-8.797 ± 0.494
Q_4	-2.148 ± 0.200
Q_5	-5.268 ± 0.200

 $\chi^2/\text{ndf} = 14743.4/14187$ $\Pr(\chi^2|\text{ndf}) = 5.5 \times 10^{-4}$

Identification of significant structures

region	right ascension	declination	optimal scale	peak significance	post-trials
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ

Upper limits

Need measurements [and understanding] of Large Scale anisotropy in all energy range

from TeV to UHECR

AMIGA Auger Muons & Infill for the Ground Array

- 1500 m grid stations
- 750 m grid stations (infill stations)
- infill stations just installed
- associated muon detectors
- X 8 missing infill stations

Total area: 23.5 km²

Near future:

+24 stations in a 433 m grid ~ 5.9 km²

Data taking since August 2008

Water Cherenkov detectors: electromagnetic component + muons Muon detectors: muons

Final Remarks:

New measurements of the CR fluxes in the broad energy region "from the knee to the ankle" have the Potential to give very valuable information on the "high energy universe".

The Optimization of the design of a shower detector for this purpose is a non trivial problem that requires careful discussion.

Uncertainties in the shower modeling due to our imperfect Understanding of hadronic interactions remain an important issue. LHC is a great opportunity for improvement.

The study of anisotropies is of great importance.

The idea of constructing an instrument that is at the same time:

a Gamma Ray Telescope

a High Energy Cosmic Ray Detector

is natural and very attractive.

There is space for significant improvement over Existing measurements.

[but a more detailed study is required to estimate the impact of the current LHAASO project as CR detector.]