Statistics for HEP

Invited lectures, 15th International Neutrino Summer School (Università di Bologna, Italy)

> Dr. Pietro Vischia pietro.vischia@cern.ch @pietrovischia

If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit

https://www.hep.uniovi.es/vischia/persistent/2024-06-13to14_StatisticsAt15INSSinBologna_vischia.html

to get the version with working animations

Lecture 1

Probability and statistics

Pietro Vischia - Statistics for HEP (15th International Neutrino Summer School, Bologna, Italy) - 2024.06.13-14 --- 2 / 87

Practicalities

- Significantly restructured with respect to the past years
 - Lecture 1: Probability and Statistics (1.5 hours)
 - Lecture 2: Machine Learning (1.5 hours)
- More detailed material in my twenty-hours intensive course
 - It may be useful if you tried out the exercises, at your pace!
- Many references here and there, and in the last slide
 - Try to read some of the referenced papers!
 - Unreferenced stuff copyrighted P. Vischia for inclusion in my (finally) upcoming textbook

Statistics answers questions

The quality of the answer depends on the quality of the question

... in a mathematical way

- Theory
 - Approximations
 - Free parameters

- Statistics
 - Estimate parameters
 - Quantify uncertainty
 - Test theories

- Experiment
- Random fluctuations
- Mismeasurements (detector effects, etc)

Why does Statistics work?

Probability and Statistics

Random Experiments

- A well-defined procedure that produces an observable outcome \boldsymbol{x} that is not perfectly known
- *S* is the set of all possible outcomes
- S must be simple enough that we can tell whether $x \in S$ or not
- If we obtain the outcome x, then we say the event defined by $x \in S$ has occurred

• Repetitions of the experiment must happen under uniform conditions

Axiomatic definition of probability (Kolmogorov)

- (Ω, \mathcal{F}, P) : measure space
 - $\circ~$ a set Ω with associated field ($\sigma ext{-algebra})$ ${\mathcal F}$ and measure P
 - $\circ~$ Define a random event $A\in \mathcal{F}$ (A is a subset of Ω)

then:

1. The probability of A is a real number $P(A) \ge 0$ 2. If $A \cap B = \emptyset$, then P(A + B) = P(A) + P(B)3. $P(\Omega) = 1$ (probability measures are finite)

Axiomatic definition for propositions (Cox and Jaynes)

- Cox, 1946: start from reasonable premises about propositions
 - $\circ ~~A|B$ is the plausibility of the proposition A given a related proposition B
 - $\circ ~\sim A$ the proposition not-A, i.e. answering "no" to "is A wholly true?"
 - $\circ F(x,y)$ is a function of two variables
 - $\circ S(x)$ a function of one variable
- Two postulates concerning propositions
 - $\circ \ C \cdot B | A = F(C|B \cdot A, B|A)$
 - $\circ \ \sim V|A=S(B|A)$, i.e. $(B|A)^m+(\sim B|A)^m=1$
- Jaynes demonstrated that these axioms are formally equivalent to the Kolmogorov ones
 - Continuity as infinite states of knowledge rather than infinite subsets

Frequentist realization

- Repeat an experiment N times, obtain n times the outcome X
- Probability as empirical limit

 $P(X) = \lim_{N o \infty} rac{n}{N}$

Subjective ("Bayesian") realization

- P(X) is the subjective degree of belief in the outcome of a random experiment (in X being true)
 - Update your degree of belief after an experiment
- De Finetti: operative definition, based on the concept of coherent bet
 - Assume that if you bet on X, you win a fixed amount of money if X happens, and nothing (0) if X does not happen

 $P(X) := rac{ ext{The largest amount you are willing to bet}}{ ext{The amount you stand to win}}$

• Coherence is when the bet is fair, i.e. it doesn't guarantee an average profit/loss

Dutch book

Book	Odds	Probability	Bet	Payout
Trump elected	Even (1 to 1)	1/(1+1) = 0.5	20	20 + 20 = 40
Clinton elected	3 to 1	1/(1+3) = 0.25	10	10 + 30 = 40
All outcomes		0.5 + 0.25 = 0.75	30	40

Game Theory

- Outcomes are 1s and 0s
- $P(A) = \{$ stake Skeptic needs to get 1 if A happens, 0 otherwise $\}$
- Forecaster offers bets (bookie, statistical model)
- Skeptic chooses bet
- Reality announces outcomes

Skeptic announces $\mathcal{K}_0 \in \mathbb{R}$. FOR n = 1, 2, ...: Forecaster announces $p_n \in [0, 1]$. Skeptic announces $L_n \in \mathbb{R}$. Reality announces $y_n \in \{0, 1\}$. $\mathcal{K}_n := \mathcal{K}_{n-1} + L_n(y_n - p_n)$.

$$\mathbb{P}\left(\frac{\sum_{i=1}^{n}(y_i - p_i)}{n} \to 0\right) = 1$$

Random variables...

- Numeric label for each element in the space of possible outcomes
 - In Physics, we usually assume Nature is continuous, and discreteness comes from our experimental limitations
- Work with probability density functions (p.d.f.s) normalized with respect to the interval

$$f(X):=\lim_{\Delta X o 0}rac{P(X)}{\Delta X}$$
 .

$$P(a < X < b) := \int_a^b f(X) dX$$

... in many dimensions

- Joint pdf for many variables: f(X, Y, ...)
- Marginal pdf integrate over the uninteresting variables

 $f_X(X) := \int f(X,Y) dY$

• Conditional pdf fix the value of the uninteresting variables

$$f(X|Y):=rac{f(X,Y)}{f_Y(Y)}$$

Bayes Theorem

• Venn diagrams were also the basis of Kolmogorov approach (Jaynes, 2003)

Independence

- Two events A and B are independent if P(AB) = P(A)P(B)
 - Can be assumed (e.g. assume that coin tosses are independent)
 - Can be derived (verifying that equality holds)
 - $\circ~~$ E.g. if $A=\{2,4,6\}, B=\{1,2,3,4\},$ we have P(AB)=1/3=P(A)P(B)
- Two disjoint outcomes with positive probability cannot be independent $P(AB)=P(\emptyset)=0
 eq P(A)P(B)>0$

Law of Total Probability

• Bayes theorem is valid for any probability measure

$$P(A|B):=rac{P(B|A)P(A)}{P(B)}$$

- Useful decomposition by partitioning S in disjoint sets A_i
 - $\circ \ \cap A_i A_j = 0 \qquad orall i, j$
 - $\circ \ \cup_i A_i = S$

$$P(B) = \sum_i P(B \cap A_i) = \sum_i P(B|A_i)P(A_i)$$

• The Bayes theorem becomes

$$P(A|B) := rac{P(B|A)P(A)}{\sum_i P(B|A_i)P(A_i)}$$

A Word of Advice

$P(A|B) \neq P(B|A)$

- $P(have \, TOEFL|speak \, English)$ is very small, say <<1%
- $P(speak \, English | have \, TOEFL)$, is (hopefully) $\sim 100\%$

Another Word of Advice

P(outcome), P(hypothesis)

- Frequentist probability (Fisher) always refers to outcomes in repeated experiments
 - $\circ \ P(hypothesis)$ is undefined
 - Criticism: statistical procedures rely on complicated constructions (pseudodata from hypotetical experiments)
- Bayesian probability assigns probabilities also to hypotheses
 - Statistical procedures intrinsically simpler
 - Criticism: subjectivity

Intrinsically different statements

- The probability for the hypothesis to be true, given the observed data I collected, is 80%
- The probability that, when sampling many times from the hypothesis, I would obtain pseudodata similar to the data I have observed is 80%

Some history

- Bayes' 1763 (posthumous) article explains the theorem in a game of pool
- A full system for subjective probabilities was (likely independently) developed and used by Laplace
- Laplace in a sense is the actual father of Bayesian statistics

The Obligatory COVID-19 slide

- Mortal disease
 - *D*: the patient is diseased (sick)
 - \circ *H*: the patient is healthy

- Diagnostic test
 - +: the patient flags positive to the disease
 - —: the patient flags negative to the disease

- A very good test
 - $\circ \ P(+|D)=0.99$
 - $\circ P(+|H) = 0.01$
- You take the test and you flag positive: do you have the disease?

The Obligatory COVID-19 slide

- Mortal disease
 - *D*: the patient is diseased (sick)
 - H: the patient is healthy

- Diagnostic test
 - +: the patient flags positive to the disease
 - —: the patient flags negative to the disease

- A very good test
 - P(+|D) = 0.99
 - $\circ P(+|H) = 0.01$
- You take the test and you flag positive: do you have the disease?

$$P(D|+) = rac{P(+|D)P(D)}{P(+)} = rac{P(+|D)P(D)}{P(+|D)P(D)+P(+|H)P(H)}$$

- We need the incidence of the disease in the population, P(D)!
 - $\circ~P(D)=0.001$ (very rare disease): then P(D|+)=0.0902, which is fairly small
 - $\circ~P(D)=0.01$ (only a factor 10 more likely): then P(D|+)=0.50 , which is pretty high
 - P(D) = 0.1: then P(D|+) = 0.92, almost certainty! Pietro Vischia - Statistics for HEP (15th International Neutrino Summer School, Bologna, Italy) - 2024.06.13-14 --- 25 / 87

Naming Bayes

$$P(Hert ec X):=rac{P(ec Xert H)\pi(H)}{P(ec X)}$$

- \vec{X} , the vector of observed data
- $P(ec{X}|H)$, the likelihood function, encoding the result of the experiment
- $\pi(H)$, the probability we assign to H before the experiment
- $P(ec{X})$, the probability of the data
 - usually expressed using the law of total probability

 $\sum_i P(ec{X}|H_i) = 1$

• often omitted when normalization is not important, i.e. searching for mode rather than integral

$$P(H|ec{X}) \propto P(ec{X}|H) \pi(H)$$

- $P(H|ec{X})$, the posterior probability, after the experiment
 - $\circ~$ For a parametric H(heta), often written P(heta)

Prior, Likelihood, and Posterior

• Likelihood is always the same: usually it is the frequentist answer

Prior, Likelihood, and Posterior

• Likelihood is always the same: usually it is the frequentist answer

Priors to represent boundaries

- Can encode physical boundaries in the model
 - positivity of the mass of a particle
 - cross section is positive definite
- Strong assumptions on the model can hide weaknesses or anomalies
 - $\circ~$ a transition probability such as V_{tb} is defined in [0,1] only if you assume the standard model

Representing ignorance

• Ignorance depends on the parameterization

• Elicitation of expert opinion

• Jeffreys priors

- Compute information on the parameter
- Find a parameterization that keeps it constant

Information (Fisher)

- Information should increase with the number of observations
 - 2x data, 2x information (if data are independent)
- Information should be conditional on the hypothesis we are studying

 $\circ~~I=I(heta)$, irrelevant data should carry zero information on heta

- Information should be related to precision
 - Larger information should lead to better precision

• Formal equivalence with other definitions (e.g. Shannon)

The Likelihood Principle

• Data sample $ec{x}_{obs}$

$$\mathcal{L}(ec{x}; heta) = P(ec{x}| heta)|_{ec{x}obs}$$

- The likelihood function $L(\vec{x}; \theta)$ contains all the information available in the data sample relevant for the estimation of θ
 - $\circ~$ Automatically satisfied by Bayesian statistics: $P(hetaert ec x; heta) \propto L(ec x; heta) imes \pi(heta)$
 - Frequentist typically make inference in terms of hypothetical data (likelihood not the only source of information)
- Does randomness arise from our imperfect knowledge or is it an intrinsic property of Nature?

Likelihood and Fisher Information

- Define Fisher information via the curvature of the likelihood function, $\frac{\partial^2 \mathcal{L}(X;\theta)}{\partial \theta^2}$
 - Larger when there are more data
 - Conditional on the parameter studied
 - Larger when the spread is smaller (larger precision)

More formally...

- Score: $S(X; \theta) = rac{\partial}{\partial heta} ln L(X; heta)$
- Fisher information as variance of the score

$$I(heta) = E \Big[\Big(rac{\partial}{\partial heta} ln L(X; heta) \Big)^2 | heta_{true} \Big] = \int \Big(rac{\partial}{\partial heta} ln f(x| heta) \Big)^2 f(x| heta) dx \geq 0$$

• Under some regularity conditions (twice differentiability, differentiability of integral, support indep. on θ)

$$I(heta) = -E \Big[\Big(rac{\partial^2}{\partial heta^2} ln L(X; heta) \Big)^2 | heta_{true} \Big]$$

Jeffreys Priors and Information

• Reparameterization:
$$heta o heta'(heta)$$
, when $\pi(heta') := E\left[\left(rac{\partial lnN}{\partial heta'}
ight)^2
ight]$

$$\begin{aligned} \pi(\theta) &= \pi(\theta') \left| \frac{d\theta'}{d\theta} \right| \propto \sqrt{E\left[\left(\frac{\partial \ln N}{\partial \theta'} \right)^2 \right] \left| \frac{\partial \theta'}{\partial \theta} \right|} = \sqrt{E\left[\left(\frac{\partial \ln L}{\partial \theta'} \frac{\partial \theta'}{\partial \theta} \right)^2 \right]} \\ &= \sqrt{E\left[\left(\frac{\partial \ln L}{\partial \theta} \right)^2 \right]} = \sqrt{I(\theta)} \end{aligned}$$

- To keep information constant, define prior via the information
 - Location parameters: uniform prior
 - Scale parameters: prior $\propto \frac{1}{\theta}$
 - Poisson processes: prior $\propto \frac{1}{\sqrt{\theta}}$
- The authors of STAN maintain a nice set of recommendations on priors

0

Location and Dispersion

- Draw inference on a population using a sample of experiment outcomes
 - Location ("where are most values concentrated at?")
 - Dispersion ("how spread are the values around the center?")
- Types of uncertainty
 - Error: deviation from the true value (bias)
 - Uncertainty: spread of the sampling distribution

- Sources of uncertainty
 - Random ("statistical"): randomness manifests as distribution spread
 - Systematic: wrong measurement manifests as bias

Binomial Distribution

- Discrete variable: r, positive integer $\leq N$
- Parameters:
 - \circ *N*, positive integer
 - $\circ p, 0 \leq p \leq 1$
- Probability function: $P(r) = {N \choose r} p^r (1-p)^{N-r}$, r = 0, 1, ..., N
- Usage: probability of finding exactly *r* successes in N trials

• The distribution of the number of events in a single bin of a histogram is binomial (if the bin contents are independent)

Poisson Distribution

- Discrete variable: *r*, positive integer
- Parameter: μ , positive real number
- Probability function: $P(r) = rac{\mu^r e^{-\mu}}{r!}$
- $E(r)=\mu$, $V(r)=\mu$
- Usage: probability of finding exactly *r* events in a given amount of time, if events occur at a constant rate.

Gaussian ("Normal") Distribution

- Variable: X, real number
- Parameters:
 - μ , real number
 - $\circ \sigma$, positive real number
- Probability function: $f(X) = N(\mu, \sigma^2) = rac{1}{\sigma\sqrt{2\pi}} exp \left[-rac{1}{2} rac{(X-\mu)^2}{\sigma^2}
 ight]$
- $E(X) = \mu$, $V(X) = \sigma^2$
- Usage: describes the distribution of independent random variables. It is also the high-something limit for many other distributions

- Parameter: integer N>0 {\emptysem degrees of freedom}
- Continuous variable $X\in \mathcal{R}$
- p.d.f., expected value, variance

$$egin{aligned} f(X) &= rac{rac{1}{2} \left(rac{X}{2}
ight)^{rac{H}{2}-1} e^{-rac{X}{2}}}{\Gamma\left(rac{N}{2}
ight)} \ E[r] &= N \ V(r) &= 2N \end{aligned}$$

• It describes the distribution of the sum of the squares of a random variable, $\sum_{i=1}^{N} X_i^2$

• Reminder: $\Gamma() := \frac{N!}{r!(N-r)!}$

Asymptotically

Estimate location and dispersion

- Expected value: $E[X]:=\int_\Omega Xf(X)dX$ (or $E[X]:=\sum_i X_iP(X_i)$ in the discrete case)
 - Extended to generic functions of a random variable: $E[g]:=\int_{\Omega}g(X)f(X)dX$
- Mean of X is $\mu := E[X]$
- Variance of X is $\sigma_X^2 := V(X) := E[(X \mu)^2] = E[X^2] (E[X])^2 = E[X^2] \mu^2$
- Extension to more variables is trivial, and gives rise to the concept of
- Covariance (or error matrix) of two variables: $V_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y = \int XY f(X, Y) dX dY - \mu_X \mu_Y$
 - $\circ~$ Symmetric, and $V_{XX}=\sigma_X^2$
 - Correlation coefficient $ho_{XY} = rac{V_{XY}}{\sigma_X \sigma_Y}$

• ho_{XY} is related to the angle in a linear regression of X on Y (or viceversa)

Fig. 1.9 Scatter plots of random variables x and y with (a) a positive correlation, $\rho = 0.75$, (b) a negative correlation, $\rho = -0.75$, (c) $\rho = 0.95$, and (d) $\rho = 0.25$. For all four cases the standard deviations of x and y are $\sigma_x = \sigma_y = 1$.

... but:

• Several nonlinear correlations may yield the same ho_{XY} (and other summary statistics)

Linear correlation is weak

- X and Y are independent if the occurrence of one does not affect the probability of occurrence of the other
 - $\circ X, Y$ independent $\implies
 ho_{XY} = 0$
 - $\circ
 ho_{XY} = 0
 ightarrow X, Y$ independent

Mutual information

$$egin{aligned} I(X;Y) &= \sum_{y\in Y} \ &\sum_{x\in X} p(x,y) log\left(rac{p(x,y)}{p_1(x)p_2(y)}
ight) \end{aligned}$$

- General notion of correlation linked to the information that X and Y share
 - Symmetric: I(X;Y) = I(Y;X)
 - $\circ I(X;Y) = 0$ if and only if X and Y are totally independent

• Related to entropy

I(X;Y) = H(X) - H(X|Y)= H(Y) - H(Y|X)= H(X) + H(Y) - H(X,Y)

Causal inference

• Disentangle with interventions on Directed Acyclic Graphs

Figure 6. Seeing: DAGs are used to encode conditional independencies. The first three DAGs encode the same associations. *Doing*: DAGs are causal. All of them encode distinct causal assumptions.

Estimators

- $x=(x_1,...,x_N)$ of N statistically independent observations $x_i\sim f(x)$
 - Determine some parameter heta of f(x)
 - $\circ x, heta$ in general are vectors
- Estimator is a function of the observed data that returns numerical values $\hat{\theta}$ for the vector θ .
- (Asymptotic) Consistency: $\lim_{N
 ightarrow\infty}\hat{ heta}= heta_{true}$
- Unbiasedness: the bias is zero
 - $\circ~~$ Bias: $b:=E[\hat{ heta}]- heta_{true}$
 - $\circ~$ If bias known: $\hat{ heta}'=\hat{ heta}-b$, so b'=0
- Efficiency: smallest possible $V[\hat{ heta}]$

Robustness: insensitivity from small

deviations from the underlying p.d.f.

Sufficient statistic

- Test statistic: a function of the data (a quantity derived from the data sample)
- $X \sim f(X| heta)$, then T(X) is sufficient for heta if f(X|T) is independent of heta
- T carries as much information about heta as the original data X
 - $\circ~\,$ Data X with model M and statistic T(X) with model M' provide the same inference
- Sufficiency Principle: if T(X) = T(Y), then X and Y provide same inference about θ
 - Implications for data storage, computation requirements, etc.
- Rao-Blackwell theorem: if g(X) is an estimator for θ and T is sufficient, then E[g(X)|T(X)] is never a worse estimator of θ
 - $\circ~$ Build a ballpark estimator g(X), then condition on some T(X) to obtain a better estimator

The Maximum Likelihood Method

• $x = (x_1,...,x_N)$ of N statistically independent observations $x_i \sim f(x)$

$$L(x; heta) = \prod_{i=1}^N f(x_i, heta)$$

• Maximum-likelihood estimator is $heta_{ML}$ such that

$$heta_{ML}:=argmax heta\Big(L(x, heta)\Big)$$

- Numerically, best to minimize: $-lnL(x; heta) = -\sum_{i=1}^N lnf(xi, heta)$
 - Fred James' Minuit's MINOS routine powers e.g. RooFit
- The MLE is:
 - Consistent: $\lim_{N o \infty} heta_{ML} = heta_{true}$;
 - $\circ~$ Unbiased: only asymptotically. $ec{b}\propto rac{1}{N}$, so $ec{b}=0$ only for $N
 ightarrow\infty$;
 - Efficient: $V[\theta_{ML}] = \frac{1}{I(\theta)}$
 - $\circ~$ Invariant under $\psi = g(heta) : \hat{\psi}_{ML} = g(heta_{ML})$

MLE for Nuclear Decay

- Nuclear decay with half-life τ
 - $f(t; au)=rac{1}{ au}e^{-rac{t}{ au}}$ $E[f] = \tau$ $V[f] = \tau^2$
- Sample $t_i \sim f(t; \tau)$, obtaining $f(t_1, ...t_N; \tau) = \prod_i f(t_i; \tau) = L(\tau)$

$$rac{\partial ln L(au)}{\partial au} = \sum_i \left(-rac{1}{ au} + rac{t_i}{ au^2}
ight) \equiv 0 \qquad \Longrightarrow \qquad \hat{ au}(t_1,...,t_N) = rac{1}{N} \sum_i t_i$$

- Unbiased: $b = E[\hat{ au}] E[f] = au au = 0$
- Variance depends on samples: $V[\hat{ au}] = V \left| rac{1}{N} \sum_i t_i \right| = rac{1}{N^2} \sum_i V[t_i] = rac{ au^2}{N}$

Estimator	Consistent	Unbiased	Efficient
$\hat{ au} = \hat{ au}_{ML} = rac{t_1 + + t_N}{N}$	Yes	Yes	Yes
$\hat{ au} = rac{t_1++t_N}{N-1}$	Yes	No	No
$\hat{ au} = t_i$	No	Yes	No

- Cannot have both zero bias and the smallest variance
- Information acts on the curvature of the likelihood, which represents the precision
 - Information is a limiting factor for the variance

Bias-variance tradeoff

Rao-Cramer-Frechet (RCF) bound

 $V[\hat{ heta}] \geq rac{(1+\partial b/\partial heta)^2}{-Eig[\partial^2 lnL/\partial heta^2ig]}$

• Fisher Information Matrix

 $I_{ij}=Eig[\partial^2 lnL/\partial heta_i\partial heta_jig]$

$$argmin_{x,y} \Big(f(x,y) \Big)_y
eq argmin_y \Big(f(x,y) \Big)$$

Approximate variance

$$V[\hat{oldsymbol{ heta}}] \geq rac{\left(1+rac{\partial b}{\partial heta}
ight)^2}{-E\left[rac{\partial^2 lnL}{\partial heta^2}
ight]}$$

• MLE is efficient and asymptotically unbiased

$$V[heta_{ML}]\simeq rac{1}{-E\left[rac{\partial^2 lnL}{\partial heta^2}
ight]}igert heta= heta ML$$

• For a Gaussian pdf $f(x; heta) = N(\mu,\sigma)$

$$L(heta) = ln \Big[- rac{(x- heta)^2}{2\sigma^2} \Big]$$

• $L(\theta_{1\sigma}) - \hat{\theta}_{ML} = 1/2$, and the area enclosed in $[\theta_{ML} - \sigma, \theta_{ML} + \sigma]$ will be 68.3%.

Confidence interval

- An interval with a fixed probability content $P((\theta_{ML} - \theta_{true})^2 \le \sigma)) = 68.3\%$ $P(-\sigma \le \theta_{ML} - \theta_{true} \le \sigma) = 68.3\%$ $P(\theta_{ML} - \sigma \le \theta_{true} \le \theta_{ML} + \sigma) = 68.3\%$
- Practical prescription
 - Point estimate by computing the MLE
 - Confidence interval by taking the range delimited by the crossings of the likelihood function with ¹/₂ (for 68.3% probability content, or 2 for 95% probability content), etc)

- MLE is invariant for monotonic transformations of heta
 - Likelihood crossings can be used also for asymmetric likelihood functions
 - Intervals exact only to $\mathcal{O}(\frac{1}{N})$

Normal approximation

• Good only to $\mathcal{O}(\frac{1}{N})$:

$$L(x; heta) \propto exp \Big[-rac{1}{2} (heta - heta_{ML})^T H(heta - heta_{ML}) \Big]$$

Likelihood in many dimensions

- Elliptical contours correspond to gaussian Likelihoods
 - The closer to MLE, the more elliptical the contours, even in nonlinear problems
 - Minimizers just follow the contour regardless of nonlinearity
- Crossings (contours) adapted to areas under N-dimensional gaussians

Profiling for systematic uncertainties

- Once upon a time, cross sections were: $\sigma = rac{N_{data} N_{bkg}}{\epsilon L}$
 - $\circ~~N_{sig}$ estimated from $N_{data}-N_{bkg}$ for the measured integrated luminosity L
 - $\circ~$ Uncertainties in the acceptance ϵ propagated to the result for σ
- Nowadays, $p(x|\mu, \theta)$ pdf for the observable x to assume a certain value in a single event
 - $\circ \ \mu := rac{\sigma}{\sigma_{pred}}$ parameter of interest
 - \circ heta nuisance parameters representing all the uncertainties affecting the measurement
 - \circ Many events: $\prod_{e=1}^n p(x_e|\mu, heta)$
- The number of events in the data set is however a Poisson random variable itself!

• Marked Poisson Model $f(X|
u(\mu, heta),\mu, heta)=Pois(n|
u(\mu, heta))\prod_{e=1}^n p(x_e|\mu, heta)$

Uncertainties as nuisance parameters

- Incorporate systematic uncertainties as nuisance parameter θ (Conway, 2011)
 - constraint interpreted as (typically Gaussian) prior coming from the auxiliary measurement
- MLE still depends on nuisance parameters: $\hat{\mu} := argmax_{\mu}\mathcal{L}(\mu, heta; X)$

$$\mathcal{L}(\boldsymbol{n}, \boldsymbol{\alpha}^{\boldsymbol{0}} | \boldsymbol{\mu}, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \boldsymbol{\mu} S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(\alpha_j^0 | \alpha_j, \delta \alpha_j)$$

$$\downarrow$$

$$\mathcal{L}(\boldsymbol{n}, 0 | \boldsymbol{\mu}, \boldsymbol{\alpha}) = \prod_{i \in bins} \mathcal{P}(n_i | \boldsymbol{\mu} S_i(\boldsymbol{\alpha}) + B_i(\boldsymbol{\alpha})) \times \prod_{j \in syst} \mathcal{G}(0 | \alpha_j, 1)$$

Sidebands

 $egin{aligned} \mathcal{L}_{full}(s,b) = \ \mathcal{P}(N_{SR}|s+b) imes \mathcal{P}(N_{CR}| ilde{ au} \cdot b) \end{aligned}$

- Example subsidiary measurement of the background rate:
 - 8% systematic uncertainty in the MC rates
 - \hat{b} : measured background rate

 $\circ \; \mathcal{G}(ilde{b}|b, 0.08) \, \mathcal{L}_{full}(s, b) = \mathcal{P}(N_{SR}|s+b) imes \mathcal{G}(ilde{b}|b, 0.08)$

The Likelihood Ratio:

$$\lambda(\mu):=rac{\mathcal{L}(\mu,\hat{\hat{ heta}})}{\mathcal{L}(\hat{\mu},\hat{ heta})}$$

- Profiling: eliminate dependence on θ by taking conditional MLEs
 - Bayesian marginalize Demortier, 2002

- $\lambda(\mu)$ distribution by toy data, or use Wilks theorem: $\lambda(\mu) \sim exp ig|$ - $\frac{1}{2}\chi^{2}\left[\left(1+\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)\right) \text{ under some regularity conditions}\right]$ Pietro Vischia - Statistics for HEP (15th International Neutrino Summer School, Bologna, Italy) - 2024.06.13-14 --- 60 / 87

What is a nuisance parameter?

Pulls and Constraints

- Pull: difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit uncertainty: $pull := \frac{\hat{\theta} \theta}{\delta \theta}$
- Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance parameter.

Correlation and Significance

- What worries you the most?
 - $\circ~$ A pull with very small constraint: $heta_{prefit}=0\pm1, heta_{postfit}=1\pm0.9$
 - $\circ~$ The same pull with a strong constraint: $heta_{prefit}=0\pm1, heta_{postfit}=1\pm0.2$

Correlation and Significance

- What worries you the most?
 - $\circ~$ A pull with very small constraint: $heta_{prefit}=0\pm1, heta_{postfit}=1\pm0.9$
 - $\circ~$ The same pull with a strong constraint: $heta_{prefit}=0\pm1, heta_{postfit}=1\pm0.2$
- Compare the shift to its uncertainty
- Indipendent measurements: the compatibility C is

$$C=\Delta heta/\sigma_{\Delta heta}=rac{ heta_2- heta_1}{\sqrt{\sigma_1^2+\sigma_2^2}}$$

- First case C=0.74, second case C=0.98 (larger, still within uncertainty)
- These are not independent measurements! Worst-case scenario formula:

$$C=\Delta heta/\sigma_{\Delta heta}=rac{ heta_2- heta_1}{\sqrt{\sigma_1^2-\sigma_2^2}}$$

- First case, C=2.29, second case C=1.02
- The same pull is more significant if there is (almost no) constraint!!!

Impacts on the post-fit μ

- Fix each θ to its post-fit value $\hat{\theta}$ plus/minus its pre(post)fit uncertainty $\delta\theta$ ($\delta\hat{\theta}$)
- Reperform the fit for μ
- Impact is $\hat{\mu} \hat{\mu}(\hat{ heta})$ (should give perfect result on Asimov dataset)

Breakdown of uncertainties

- Amount of uncertainty on μ imputable to a given source of uncertainty
 - Modern version of Fisher's formalization of the ANOVA concept
 - the constituent causes fractions or percentages of the total variance which they together produce (Fisher, 1919)
 - the variance contributed by each term, and by which the residual variance is reduced when that term is removed (Fisher, 1921)
- Freeze a set of $\hat{\theta}_i$ to $\hat{\theta}_i$
- Repeat the fit, uncertainty on μ is smaller
- Contribution of θ_i to the overall uncertainty as squared difference
- Statistical uncertainty by freezing all nuisance parameters

Which is the "correct" constraint?

Confidence intervals

- Probability content: solve $eta = P(a \leq X \leq b) = \int_a^b f(X| heta) dX$ for a and b
 - A method yielding interval with the desired β , has coverage

Checking for coverage

- Operative definition of coverage probability
 - Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers the true value of the parameter
 - Obtain the sampling distribution of the confidence intervals using toy data
- Nominal coverage: the one you have built your method around
- Actual coverage: the one you calculate from the sampling distribution
 - $\circ~$ Toy experiment: sample N times for a known value of $heta_{true}$
 - Compute interval for each experiment
 - \circ Count fractions of intervals containing $heta_{true}$
- Nominal and actual coverage should agre if all assumptions of method are valid
 - Undercoverage: intervals smaller than proper ones
 - Overcoverage: intervals larger than proper ones

Discrete Case

- Probability content $P(a \leq X \leq b) = \sum_a^b f(X| heta) dX \leq eta$
- Binomial: find (r_{low},r_{high}) such that $\sum_{r=r_{low}}^{r=r_{high}} {r \choose N} p^r (1-p)^{N-r} \leq 1-lpha$
 - \circ Gaussian approximation: $p\pm Z_{1-lpha/2}\sqrt{rac{p(1-p)}{N}}$
 - Clopper Pearson: invert two single-tailed binomial tests

The Neyman construction

- Unique solutions to finding confidence intervals are infinite
 - Let's suppose we have chosen a way
- Build horizontally: for each (hypothetical) value of heta, determine $t_1(heta), t_2(heta)$ such that $\int_{t_1}^{t_2} P(t| heta) dt = eta$
- Read vertically: from the observed value t_0 , determine $[\theta_L, \theta^U]$ by intersection
- Intrinsically frequentist procedure

Pietro Vischia - Statistics for HEP (15th International Neutrino Summer School, Bologna, Italy) - 2024.06.13-14 --- 71/87

Flip-flopping

- Gaussian measurement (variance 1) of $\mu > 0$ (physical bound)
- Individual prescriptions are self-consistent
 - 90% central limit (solid lines)
 - 90% upper limit (single dashed line)
- Mixed choices (after looking at data) are problematic
- Unphysical values and empty intervals: choose 90% central interval, measure $x_{obs} = -2.0$
 - Interval empty, yet with the desired coverage

The Feldman-Cousins Ordering Principle

- Unified approach for determining interval for $\mu=\mu_0$
 - Include in order by largest $\ell(x) = rac{P(x|\mu_0)}{P(x|\hat{\mu})}$
 - $\circ \; \hat{\mu}$ value of μ which maximizes $P(x|\mu)$ within the physical region
 - $\circ \; \hat{\mu}$ remains equal to zero for $\mu < 1.65$, yielding deviation w.r.t. central intervals
- Minimizes Type II error (likelihood ratio for simple test is the most powerful test)
- Solves the problem of empty intervals
- Avoids flip-flopping in choosing an ordering prescription

Bayesian intervals

- Often numerically identical to frequentist confidence intervals
 - Much simple derivation
 - Interpretation is different: {\em credible intervals}
 - Posterior density summarizes the complete knowledge about heta
- Highest Probability Density intervals
 - Work out of the box for multimodal distributions and for physical constraints

Fig. 1 Simple examples of central (*black*) and highest probability density (*red*) intervals. The intervals coincide for a symmetric distribution, otherwise the HPD interval is shorter. The three examples are a normal distribution, a gamma with shape parameter 3, and the marginal posterior density for a variance parameter in a hierarchical model. (Color figure online)

Bayesian intervals

- Often numerically identical to frequentist confidence intervals
 - Much simple derivation
 - Interpretation is different: {\em credible intervals}
 - Posterior density summarizes the complete knowledge about heta
- Highest Probability Density intervals
 - Work out of the box for multimodal distributions and for physical constraints

Test of hypotheses

- Hypothesis: a complete rule that defines probabilities for data.
- Statistical test: a proposition on compatibility of H_0 with the available data.
 - $\circ \ X \in \Omega$ a test statistic
 - $\circ~$ Critical region W: if $X\in W$, reject H_0 , Acceptance region>: if $X\in \Omega-W$, accept H_0
 - $\circ~$ Level of significance (size of the test): $P(X \in W | H_0) = lpha$

Alternative hypothesis and power

- Need an alternative to solve ambiguities
- Power of the test
 - $\circ \ P(X \in W | H_1) = 1 \beta$
 - $\circ~~$ Power eta is such that $P(X\in \Omega-W|H_1)=eta$

Families of Tests

- Varying α and β results in families of tests
- In one dimension, likelihood ratio (Neyman-Pearson) test is the most powerful test, given by

$$\ell(X, heta_0, heta_1):=rac{f(X| heta_1)}{f(X| heta_0)}\geq c_lpha$$

Bayesian Model Selection

- M_0 and M_1 predict $heta extsf{>} : P(heta | x, M) = rac{P(x | heta, M) P(heta | M)}{P(x | M)}$
 - $\circ~$ Bayesian evidence (Model likelihood) $P(x|M) = \int P(x| heta,M) P(heta|M) d heta$
 - \circ Posterior for M_0 : $P(M_0|x)=rac{P(x|M_0)\pi(M_0)}{P(x)}$, posterior for M_1 : $P(M_1|x)=rac{P(x|M_1)\pi(M_1)}{P(x)}$
 - Posterior odds: $\frac{P(M_0|x)}{P(M_1|x)} = \frac{P(x|M_0)\pi(M_0)}{P(x|M_1)\pi(M_1)}$
 - Bayes factor: $B_{01} := rac{P(x|M_0)}{P(x|M_1)}$
 - $\circ~$ Posterior odds = Bayes Factor \times prior odds
- Turing (IJ Good, 1975): deciban as the smallest change of evidence human mind can discern

Jeffreys

к	dHart	bits	Strength of evidence Negative (supports M2) Barely worth mentioning	
< 10 ⁰	0	—		
$10^0 to \ 10^{1/2}$	0 to 5	0 to 1.6		
$10^{1/2}$ to 10^{1}	5 to 10	1.6 to 3.3	Substantial	
10^1 to $10^{3/2}$	10 to 15	3.3 to 5.0	0 to 6.6 Very strong	
$10^{3/2}$ to 10^2	15 to 20	5.0 to 6.6		
> 10 ²	> 20	> 6.6		

Kass and Raftery

log ₁₀ K	к	Strength of evidence
0 to 1/2	1 to 3.2	Not worth more than a bare mention
1/2 to 1	3.2 to 10	Substantial
1 to 2	10 to 100	Strong
> 2	> 100	Decisive

Trotta

InB	relative odds	favoured model's probability	Interpretation
< 1.0	< 3:1	< 0.750	not worth mentioning
< 2.5	< 12:1	0.923	weak
< 5.0	< 150:1	0.993	moderate
> 5.0	> 150:1	> 0.993	strong

Discourage nonpredictive models

- The Bayes Factor penalizes excessive model complexity
- Highly predictive models are rewarded, broadly-non-null priors are penalized

P-values

- Probability of obtaining a fluctuation with test statistic q_{obs} or larger, under the null hypothesis H_0
 - $\circ~$ Need the distribution of test statistic under \hzero either with toys or asymptotic approximation (if N_{obs} is large, then $q\sim\chi^2(1)$)

Beyond frequentism: CLs

•
$$CL_s := \frac{CL_{s+b}}{CL_b}$$

- Exclude the signal hypothesis at confidence level CL if $1-CL_s \leq CL$
- Ratio of p-values is not a p-value
- Denominator prevents excluding signals for which there is no sensitivity
- Formally corresponds to have $H_0 = H(heta! = 0)$ and test it against $H_1 = H(heta = 0)$

From a scans to limits

- Scan the \$CLsteststatisticasafunctionofthePOI(typically\mu = \sigma{obs}/\sigma{pred}\$)
- Find intersection with the desired confidence level
- (eventually) convert the limit on μ back to a cross section

From a limit to hypothesis testing

- Apply the CL_s method to each Higgs mass hypothesis
- Show the CL_s test statistic for each value of the fixed hypothesis
- Green/yellow bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ intervals for the expected values under B-only hypothesis
 - \circ Obtained by taking the quantiles of the B-only hypothesis

From a limit to hypothesis testing

- CLs limit on μ as a function of mass hypothesis
- p-value of excess
- Fitted signal strength peaks at excess

Duality

- Acceptance region set of values of the test statistic for which we don't reject H_0 at significance level lpha
- 100(1-lpha)% confidence interval: set of *values of the parameter heta for which we don't reject H_0 (if H_0 is assumed true)

Summary

- Statistics is the way we connect experiment and models
 - Estimate parameters
 - Quantify uncertainties
 - Test theories

• All models are wrong, some models are useful (George E. P. Box, Science and Statistics)